# sandbox-bindgen.rb # # This file is part of mkxp. # # Copyright (C) 2013 - 2021 Amaryllis Kulla # # mkxp is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 of the License, or # (at your option) any later version. # # mkxp is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with mkxp. If not, see . ################################################################################ # True if generating bindings for 64-bit WebAssembly, false if generating bindings for 32-bit WebAssembly MEMORY64 = false # The name passed as the `-n`/`--module-name` flag to `wasm2c` MODULE_NAME = 'ruby' # Include directive for including the header file generated by `wasm2c` MODULE_INCLUDE = '#include ' # The name of the `malloc()` binding defined in ruby-bindings.h MALLOC_FUNC = 'mkxp_sandbox_malloc' # The name of the `free()` binding defined in ruby-bindings.h FREE_FUNC = 'mkxp_sandbox_free' RTYPEDDATA_DATA_OFFSET = 'mkxp_sandbox_rtypeddata_data_offset' RTYPEDDATA_DMARK_FUNC = 'mkxp_sandbox_rtypeddata_dmark' RTYPEDDATA_DFREE_FUNC = 'mkxp_sandbox_rtypeddata_dfree' RTYPEDDATA_DSIZE_FUNC = 'mkxp_sandbox_rtypeddata_dsize' RTYPEDDATA_DCOMPACT_FUNC = 'mkxp_sandbox_rtypeddata_dcompact' FIBER_ENTRY_POINT = 'mkxp_sandbox_fiber_entry_point' FIBER_ARG0 = 'mkxp_sandbox_fiber_arg0' FIBER_ARG1 = 'mkxp_sandbox_fiber_arg1' ################################################################################ IGNORED_FUNCTIONS = Set[ 'rb_class_descendants', 'rb_close_before_exec', ] ARG_HANDLERS = { 'VALUE' => { keep: true, primitive: :size }, 'ID' => { keep: true, primitive: :size }, 'int' => { primitive: :s32 }, 'unsigned int' => { primitive: :u32 }, 'long' => { primitive: :size }, 'unsigned long' => { primitive: :size }, 'long long' => { primitive: :s64 }, 'unsigned long long' => { primitive: :u64 }, 'float' => { primitive: :f32 }, 'double' => { primitive: :f64 }, 'const char *' => { keep: true, buf_size: 'std::strlen(ARG) + 1', serialize: "std::strcpy((char *)(bind.instance->w2c_memory.data + BUF), ARG);\n", }, 'const VALUE *' => { keep: true, condition: lambda { |func_name, args, arg_index| arg_index > 0 && args[arg_index - 1] == 'int' }, # Only handle arguments of type `const VALUE *` if the previous argument is of type `int` buf_size: 'PREV_ARG * sizeof(VALUE)', serialize: <<~HEREDOC std::memcpy(bind.instance->w2c_memory.data + BUF, ARG, PREV_ARG * sizeof(VALUE)); HEREDOC }, 'volatile VALUE *' => { keep: true, buf_size: 'sizeof(VALUE)', serialize: <<~HEREDOC *(VALUE *)(bind.instance->w2c_memory.data + BUF) = *ARG; HEREDOC }, 'void *' => { condition: lambda { |func_name, args, arg_index| args[arg_index + 1] == 'const rb_data_type_t *' }, # Only handle arguments of type `void *` if the next argument is of type `const rb_data_type_t *` primitive: :ptr }, 'const rb_data_type_t *' => { keep: true, formatter: lambda { |name| "const struct bindings::rb_data_type &#{name}" }, }, 'VALUE (*)()' => { keep: true, anyargs: true, formatter: lambda { |name| "VALUE (*#{name})(ANYARGS)" }, declaration: 'VALUE (*)(ANYARGS)', }, 'rb_alloc_func_t' => { keep: true, func_ptr_args: [:value], func_ptr_rets: [:value], formatter: lambda { |name| "VALUE (*#{name})(VALUE)" }, declaration: 'VALUE (*)(VALUE)', }, 'VALUE (*)(VALUE)' => { keep: true, func_ptr_args: [:value], func_ptr_rets: [:value], formatter: lambda { |name| "VALUE (*#{name})(VALUE)" }, declaration: 'VALUE (*)(VALUE)', }, 'VALUE (*)(VALUE,VALUE)' => { keep: true, func_ptr_args: [:value, :value], func_ptr_rets: [:value], formatter: lambda { |name| "VALUE (*#{name})(VALUE, VALUE)" }, declaration: 'VALUE (*)(VALUE, VALUE)', }, } RET_HANDLERS = { 'void' => { keep: true, primitive: :void }, 'VALUE' => { keep: true, primitive: :size }, 'ID' => { keep: true, primitive: :size }, 'int' => { primitive: :s32 }, 'unsigned int' => { primitive: :u32 }, 'long' => { primitive: :ssize }, 'unsigned long' => { primitive: :size }, 'long long' => { primitive: :s64 }, 'unsigned long long' => { primitive: :u64 }, 'float' => { primitive: :f32 }, 'double' => { primitive: :f64 }, 'char *' => { primitive: :ptr }, 'const char *' => { primitive: :ptr }, } VAR_TYPE_TABLE = { ssize: 'wasm_ssize_t', size: 'wasm_size_t', ptr: 'wasm_ptr_t', s32: 'int32_t', u32: 'uint32_t', s64: 'int64_t', u64: 'uint64_t', f32: 'float', f64: 'double', } FUNC_TYPE_TABLE = { ssize: MEMORY64 ? 'WASM_RT_I64' : 'WASM_RT_I32', size: MEMORY64 ? 'WASM_RT_I64' : 'WASM_RT_I32', value: MEMORY64 ? 'WASM_RT_I64' : 'WASM_RT_I32', ptr: MEMORY64 ? 'WASM_RT_I64' : 'WASM_RT_I32', s32: 'WASM_RT_I32', u32: 'WASM_RT_I32', s64: 'WASM_RT_I64', u64: 'WASM_RT_I64', f32: 'WASM_RT_F32', f64: 'WASI_RT_F64', } ################################################################################ CALL_TYPES = [ [:void, [:value]], # dmark, dfree, dcompact [:size, [:value]], # dsize [:value, [:s32, :ptr, :value]], # rb_define_method with argc = -1 ] for i in 0..16 CALL_TYPES.append([:value, [:value] * (i + 1)]) # rb_define_method with argc = i end $call_type_hash_salt = 0 def call_type_hash(call_type) h = [$call_type_hash_salt, call_type].hash.to_s(36) if h.start_with?('-') h = h[1..] end return h end while CALL_TYPES.map { |call_type| call_type_hash(call_type) }.uniq.length < CALL_TYPES.length $call_type_hash_salt += 1 end HEADER_START = <<~HEREDOC /* ** mkxp-sandbox-bindgen.h ** ** This file is part of mkxp. ** ** Copyright (C) 2013 - 2021 Amaryllis Kulla ** ** mkxp is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 2 of the License, or ** (at your option) any later version. ** ** mkxp is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with mkxp. If not, see . */ #ifndef MKXP_SANDBOX_BINDGEN_H #define MKXP_SANDBOX_BINDGEN_H #include #include #include #include #include #include #include #include #include #{MODULE_INCLUDE} #include "binding-sandbox/types.h" // Autogenerated by sandbox-bindgen.rb. Don't manually modify this file - modify sandbox-bindgen.rb instead! #if WABT_BIG_ENDIAN #define SERIALIZE_32(value) __builtin_bswap32(value) #define SERIALIZE_64(value) __builtin_bswap64(value) #else #define SERIALIZE_32(value) (value) #define SERIALIZE_64(value) (value) #endif #define SERIALIZE_VALUE(value) SERIALIZE_#{MEMORY64 ? '64' : '32'}(value) #define ANYARGS ... typedef int#{MEMORY64 ? '64' : '32'}_t wasm_ssize_t; typedef uint#{MEMORY64 ? '64' : '32'}_t wasm_size_t; typedef wasm_size_t wasm_ptr_t; typedef wasm_size_t VALUE; typedef wasm_size_t ID; namespace mkxp_sandbox { struct bindings { private: typedef std::tuple key_t; struct stack_frame { struct bindings &bind; void (*destructor)(void *ptr); boost::typeindex::type_index type; wasm_ptr_t ptr; inline stack_frame(struct bindings &bind, void (*destructor)(void *ptr), boost::typeindex::type_index type, wasm_ptr_t ptr) : bind(bind), destructor(destructor), type(type), ptr(ptr) {} inline ~stack_frame() { destructor(bind.instance->w2c_memory.data + ptr); } }; struct fiber { key_t key; std::vector stack; size_t stack_ptr; }; wasm_ptr_t next_func_ptr; std::shared_ptr instance; std::unordered_map> fibers; wasm_ptr_t sandbox_create_func_ptr(); public: bindings(std::shared_ptr); wasm_ptr_t sandbox_malloc(wasm_size_t); inline void sandbox_free(wasm_ptr_t ptr) { w2c_#{MODULE_NAME}_#{FREE_FUNC}(instance.get(), ptr); } inline uint8_t *get() const noexcept { return instance->w2c_memory.data; } inline uint8_t *operator*() const noexcept { return get(); } inline wasm_ptr_t rtypeddata_data(VALUE obj) const noexcept { return SERIALIZE_VALUE(obj) + *(wasm_size_t *)(instance->w2c_memory.data + instance->w2c_#{RTYPEDDATA_DATA_OFFSET}); } inline void rtypeddata_dmark(wasm_ptr_t data, wasm_ptr_t ptr) { w2c_#{MODULE_NAME}_#{RTYPEDDATA_DMARK_FUNC}(instance.get(), data, ptr); } inline void rtypeddata_dfree(wasm_ptr_t data, wasm_ptr_t ptr) { w2c_#{MODULE_NAME}_#{RTYPEDDATA_DFREE_FUNC}(instance.get(), data, ptr); } inline wasm_size_t rtypeddata_dsize(wasm_ptr_t data, wasm_ptr_t ptr) { return w2c_#{MODULE_NAME}_#{RTYPEDDATA_DSIZE_FUNC}(instance.get(), data, ptr); } inline void rtypeddata_dcompact(wasm_ptr_t data, wasm_ptr_t ptr) { w2c_#{MODULE_NAME}_#{RTYPEDDATA_DCOMPACT_FUNC}(instance.get(), data, ptr); } struct rb_data_type { friend struct bindings; inline rb_data_type() : ptr(0) {} inline wasm_ptr_t get() const { if (ptr == 0) throw SandboxTrapException(); return ptr; } private: wasm_ptr_t ptr; inline rb_data_type(wasm_ptr_t ptr) : ptr(ptr) {} }; struct rb_data_type rb_data_type(const char *wrap_struct_name, void (*dmark)(wasm_ptr_t), void (*dfree)(wasm_ptr_t), wasm_size_t (*dsize)(wasm_ptr_t), void (*dcompact)(wasm_ptr_t), wasm_ptr_t parent, wasm_ptr_t data, wasm_size_t flags); template struct stack_frame_guard { friend struct bindings; private: struct bindings &bind; struct fiber &fiber; wasm_ptr_t ptr; static void stack_frame_destructor(void *ptr) { ((T *)ptr)->~T(); } static inline struct fiber &init_fiber(struct bindings &bind) { key_t key = { *(wasm_ptr_t *)(bind.instance->w2c_memory.data + bind.instance->w2c_#{FIBER_ENTRY_POINT}), *(wasm_ptr_t *)(bind.instance->w2c_memory.data + bind.instance->w2c_#{FIBER_ARG0}), *(wasm_ptr_t *)(bind.instance->w2c_memory.data + bind.instance->w2c_#{FIBER_ARG1}), }; if (bind.fibers.count(key) == 0) { bind.fibers[key] = (struct fiber){.key = key}; } return bind.fibers[key]; } static wasm_ptr_t init_inner(struct bindings &bind, struct fiber &fiber) { if (fiber.stack_ptr == fiber.stack.size()) { fiber.stack.emplace_back( bind, stack_frame_destructor, boost::typeindex::type_id(), (bind.instance->w2c_0x5F_stack_pointer -= sizeof(T)) ); assert(bind.instance->w2c_0x5F_stack_pointer % sizeof(VALUE) == 0); new(bind.instance->w2c_memory.data + bind.instance->w2c_0x5F_stack_pointer) T(bind); } else if (fiber.stack_ptr > fiber.stack.size()) { throw SandboxTrapException(); } if (fiber.stack[fiber.stack_ptr].type == boost::typeindex::type_id()) { return fiber.stack[fiber.stack_ptr++].ptr; } else { while (fiber.stack.size() > fiber.stack_ptr) { fiber.stack.pop_back(); } ++fiber.stack_ptr; fiber.stack.emplace_back( bind, stack_frame_destructor, boost::typeindex::type_id(), (bind.instance->w2c_0x5F_stack_pointer -= sizeof(T)) ); assert(bind.instance->w2c_0x5F_stack_pointer % sizeof(VALUE) == 0); new(bind.instance->w2c_memory.data + bind.instance->w2c_0x5F_stack_pointer) T(bind); return bind.instance->w2c_0x5F_stack_pointer; } } stack_frame_guard(struct bindings &b) : bind(b), fiber(init_fiber(b)), ptr(init_inner(b, fiber)) {} public: ~stack_frame_guard() { if (get()->is_complete()) { while (fiber.stack.size() > fiber.stack_ptr) { fiber.stack.pop_back(); } // Check for stack corruptions assert(fiber.stack.size() == fiber.stack_ptr); assert(fiber.stack.back().type == boost::typeindex::type_id()); bind.instance->w2c_0x5F_stack_pointer = fiber.stack.back().ptr + sizeof(T); fiber.stack.pop_back(); } --fiber.stack_ptr; if (fiber.stack.empty()) { bind.fibers.erase(fiber.key); } } inline T *get() const noexcept { return (T *)(bind.instance->w2c_memory.data + ptr); } inline T &operator()() const noexcept { return *get(); } }; template struct stack_frame_guard bind() { return *this; } HEREDOC HEADER_END = <<~HEREDOC } #undef SERIALIZE_32 #undef SERIALIZE_64 #undef SERIALIZE_VALUE #endif // MKXP_SANDBOX_BINDGEN_H HEREDOC PRELUDE = <<~HEREDOC /* ** mkxp-sandbox-bindgen.cpp ** ** This file is part of mkxp. ** ** Copyright (C) 2013 - 2021 Amaryllis Kulla ** ** mkxp is free software: you can redistribute it and/or modify ** it under the terms of the GNU General Public License as published by ** the Free Software Foundation, either version 2 of the License, or ** (at your option) any later version. ** ** mkxp is distributed in the hope that it will be useful, ** but WITHOUT ANY WARRANTY; without even the implied warranty of ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ** GNU General Public License for more details. ** ** You should have received a copy of the GNU General Public License ** along with mkxp. If not, see . */ // Autogenerated by sandbox-bindgen.rb. Don't manually modify this file - modify sandbox-bindgen.rb instead! #include #include "mkxp-sandbox-bindgen.h" static_assert(alignof(VALUE) % sizeof(VALUE) == 0, "Alignment of `VALUE` must be divisible by size of `VALUE` for Ruby garbage collection to work. If you compiled Ruby for wasm64, try compiling it for wasm32 instead."); #if WABT_BIG_ENDIAN #define SERIALIZE_32(value) __builtin_bswap32(value) #define SERIALIZE_64(value) __builtin_bswap64(value) #else #define SERIALIZE_32(value) (value) #define SERIALIZE_64(value) (value) #endif #define SERIALIZE_VALUE(value) SERIALIZE_#{MEMORY64 ? '64' : '32'}(value) using namespace mkxp_sandbox; bindings::bindings(std::shared_ptr m) : next_func_ptr(-1), instance(m) {} wasm_ptr_t bindings::sandbox_malloc(wasm_size_t size) { wasm_ptr_t buf = w2c_#{MODULE_NAME}_#{MALLOC_FUNC}(instance.get(), size); // Verify that the entire allocated buffer is in valid memory wasm_ptr_t buf_end; if (buf == 0 || __builtin_add_overflow(buf, size, &buf_end) || buf_end >= instance->w2c_memory.size) { return 0; } return buf; } wasm_ptr_t bindings::sandbox_create_func_ptr() { if (next_func_ptr == (wasm_ptr_t)-1) { next_func_ptr = instance->w2c_T0.size; } if (next_func_ptr < instance->w2c_T0.max_size) { return next_func_ptr++; } // Make sure that an integer overflow won't occur if we double the max size of the funcref table wasm_size_t new_max_size; if (__builtin_add_overflow(instance->w2c_T0.max_size, instance->w2c_T0.max_size, &new_max_size)) { return -1; } // Double the max size of the funcref table wasm_size_t old_max_size = instance->w2c_T0.max_size; instance->w2c_T0.max_size = new_max_size; // Double the size of the funcref table buffer if (wasm_rt_grow_funcref_table(&instance->w2c_T0, old_max_size, wasm_rt_funcref_t { .func_type = wasm2c_ruby_get_func_type(0, 0), .func = NULL, .func_tailcallee = {.fn = NULL}, .module_instance = instance.get(), }) != old_max_size) { instance->w2c_T0.max_size = old_max_size; return -1; } return next_func_ptr++; } ////////////////////////////////////////////////////////////////////////////// HEREDOC POSTSCRIPT = <<~HEREDOC ////////////////////////////////////////////////////////////////////////////// struct bindings::rb_data_type bindings::rb_data_type(const char *wrap_struct_name, void (*dmark)(wasm_ptr_t), void (*dfree)(wasm_ptr_t), wasm_size_t (*dsize)(wasm_ptr_t), void (*dcompact)(wasm_ptr_t), wasm_ptr_t parent, wasm_ptr_t data, wasm_size_t flags) { wasm_ptr_t ptrs[6] = {0}; bool oom = false; ptrs[0] = sandbox_malloc(9 * sizeof(wasm_ptr_t)); ptrs[1] = sandbox_malloc(std::strlen(wrap_struct_name) + 1); for (size_t i = 0; i < 2; ++i) { if (ptrs[i] == 0) oom = true; } for (size_t i = 2; i < 6; ++i) { if ((i == 2 && dmark == NULL) || (i == 3 && dfree == NULL) || (i == 4 && dsize == NULL) || (i == 5 && dcompact == NULL)) continue; ptrs[i] = sandbox_create_func_ptr(); if (ptrs[i] == (wasm_ptr_t)-1) oom = true; } if (oom) { for (size_t i = 0; i < 2; ++i) { if (ptrs[i] != 0) try { sandbox_free(ptrs[i]); } catch (SandboxTrapException) {} } throw SandboxOutOfMemoryException(); } std::strcpy((char *)(instance->w2c_memory.data + ptrs[1]), wrap_struct_name); if (dmark != NULL) { instance->w2c_T0.data[ptrs[2]] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(1, 0, #{FUNC_TYPE_TABLE[:ptr]}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:void, [:value]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)dmark, }; } if (dfree != NULL) { instance->w2c_T0.data[ptrs[3]] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(1, 0, #{FUNC_TYPE_TABLE[:ptr]}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:void, [:value]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)dfree, }; } if (dsize != NULL) { instance->w2c_T0.data[ptrs[4]] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(1, 1, #{FUNC_TYPE_TABLE[:ptr]}, #{FUNC_TYPE_TABLE[:size]}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:size, [:value]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)dsize, }; } if (dcompact != NULL) { instance->w2c_T0.data[ptrs[5]] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(1, 0, #{FUNC_TYPE_TABLE[:ptr]}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:void, [:value]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)dcompact, }; } for (size_t i = 1; i < 6; ++i) { ((wasm_ptr_t *)(instance->w2c_memory.data + ptrs[0]))[i - 1] = SERIALIZE_VALUE(ptrs[i]); } ((wasm_ptr_t *)(instance->w2c_memory.data + ptrs[0]))[5] = 0; ((wasm_ptr_t *)(instance->w2c_memory.data + ptrs[0]))[6] = SERIALIZE_VALUE(parent); ((wasm_ptr_t *)(instance->w2c_memory.data + ptrs[0]))[7] = SERIALIZE_VALUE(data); ((wasm_ptr_t *)(instance->w2c_memory.data + ptrs[0]))[8] = SERIALIZE_VALUE(flags); return ptrs[0]; } HEREDOC ################################################################################ declarations = [] coroutines = [] call_bindings = [] func_names = [] globals = [] consts = [] for call_type in CALL_TYPES call_bindings.append( <<~HEREDOC static #{call_type[0] == :void ? 'void' : call_type[0] == :value ? 'VALUE' : VAR_TYPE_TABLE[call_type[0]]} _sbindgen_call_#{call_type_hash(call_type)}(#{(["#{call_type[0] == :void ? 'void' : call_type[0] == :value ? 'VALUE' : VAR_TYPE_TABLE[call_type[0]]} (*func)(#{(0...call_type[1].length).map { |i| call_type[1][i] == :value ? 'VALUE' : VAR_TYPE_TABLE[call_type[1][i]] }.join(', ')})"] + (0...call_type[1].length).map { |i| "#{call_type[1][i] == :value ? 'VALUE' : VAR_TYPE_TABLE[call_type[1][i]]} a#{i}" }).join(', ')}) { #{call_type[0] == :void ? '' : 'return '}#{call_type[0] != :value ? '' : 'SERIALIZE_VALUE('}func(#{(0...call_type[1].length).map { |i| call_type[1][i] == :value ? "SERIALIZE_VALUE(a#{i})" : "a#{i}" }.join(', ')})#{call_type[0] != :value ? '' : ')'}; } HEREDOC ) end File.readlines('tags', chomp: true).each do |line| line = line.split("\t") next unless line[3] == 'e' const_name = line[0] next unless const_name.match?(/^RUBY_Q[a-z]/) const_name = const_name[6..] signature = line[2].match(/(?<==) *(?:(?:[1-9][0-9]*)|(?:0x[0-9a-f]+))(?=[,;]?\$\/)/) next if signature.nil? consts.append([const_name.upcase, signature[0].strip.to_i(signature[0].strip.start_with?('0x') ? 16 : 10)]) end File.readlines('tags', chomp: true).each do |line| line = line.split("\t") next unless line[3] == 'x' global_name = line[0] next unless global_name.match?(/^rb_[a-z][A-Z]/) signature = line[2] next unless signature.start_with?('/^extern VALUE ') globals.append(global_name) end File.readlines('tags', chomp: true).each do |line| line = line.split("\t") next unless line[3] == 'p' func_name = line[0] next unless func_name.start_with?('rb_') next if func_name.end_with?('_static') next if IGNORED_FUNCTIONS.include?(func_name) # Only bind functions whose return type matches one of the return types we have a handler for ret = line[2] next unless ret.start_with?('/^') && ret.include?('(') ret = ret[2..].partition('(')[0].strip next unless ret.include?(' ') && ret.rpartition(' ')[2].end_with?(func_name) ret = ret[...-func_name.length].strip next unless RET_HANDLERS.include?(ret) # Only bind functions whose arguments all match a return type we have a handler for args = line[4] next unless args.start_with?('signature:(') && args.end_with?(')') args = args[11...-1] args = args.gsub('VALUE,VALUE', '$').split(',').map { |arg| arg.gsub('$', 'VALUE,VALUE') }.map { |arg| arg == '...' ? '...' : arg.match?(/\(\* \w+\)/) ? arg.gsub(/\(\* \w+\)/, '(*)') : arg.rpartition(' ')[0].strip } next unless (0...args.length).all? { |i| args[i] == '...' || (ARG_HANDLERS.include?(args[i]) && (ARG_HANDLERS[args[i]][:condition].nil? || ARG_HANDLERS[args[i]][:condition].call(func_name, args, i))) } coroutine_initializer = '' destructor = [] transformed_args = Set[] buffers = [] i = 0 args.each_with_index do |arg, i| next if arg == '...' handler = ARG_HANDLERS[arg] # Generate bindings for converting the arguments if !handler[:func_ptr_args].nil? || handler[:anyargs] coroutine_initializer += <<~HEREDOC f#{i} = bind.sandbox_create_func_ptr(); if (f#{i} == (wasm_ptr_t)-1) throw SandboxOutOfMemoryException(); HEREDOC if handler[:anyargs] coroutine_initializer += <<~HEREDOC switch (a#{args.length - 1}) { case -1: bind.instance->w2c_T0.data[f#{i}] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(3, 1, #{FUNC_TYPE_TABLE[:s32]}, #{FUNC_TYPE_TABLE[:ptr]}, #{FUNC_TYPE_TABLE[:value]}, #{FUNC_TYPE_TABLE[:value]}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:value, [:s32, :ptr, :value]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)a#{i}, }; break; case -2: bind.instance->w2c_T0.data[f#{i}] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(2, 1, #{FUNC_TYPE_TABLE[:value]}, #{FUNC_TYPE_TABLE[:value]}, #{FUNC_TYPE_TABLE[:value]}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:value, [:value, :value]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)a#{i}, }; break; HEREDOC for j in 0..16 case_str = <<~HEREDOC case #{j}: bind.instance->w2c_T0.data[f#{i}] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(#{j + 1}, 1, #{([FUNC_TYPE_TABLE[:value]] * (j + 2)).join(', ')}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([:value, [:value] * (j + 1)])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)a#{i}, }; break; HEREDOC coroutine_initializer += case_str.split("\n").map { |line| " #{line}".rstrip }.join("\n") + "\n" end coroutine_initializer += <<~HEREDOC default: throw SandboxTrapException(); } HEREDOC else coroutine_initializer += <<~HEREDOC bind.instance->w2c_T0.data[f#{i}] = wasm_rt_funcref_t { .func_type = wasm2c_#{MODULE_NAME}_get_func_type(#{handler[:func_ptr_args].length}, #{handler[:func_ptr_rets].length}#{handler[:func_ptr_args].empty? && handler[:func_ptr_rets].empty? ? '' : ', ' + (handler[:func_ptr_args] + handler[:func_ptr_rets]).map { |type| FUNC_TYPE_TABLE[type] }.join(', ')}), .func = (wasm_rt_function_ptr_t)_sbindgen_call_#{call_type_hash([handler[:func_ptr_rets].empty? ? :void : handler[:func_ptr_rets][0], handler[:func_ptr_args]])}, .func_tailcallee = {.fn = NULL}, .module_instance = (void *)a#{i}, }; HEREDOC end coroutine_initializer += "\n" transformed_args.add(i) elsif !handler[:buf_size].nil? coroutine_initializer += <<~HEREDOC f#{i} = bind.sandbox_malloc(#{handler[:buf_size].gsub('PREV_ARG', "a#{i - 1}").gsub('ARG', "a#{i}")}); if (f#{i} == 0) throw SandboxOutOfMemoryException(); HEREDOC coroutine_initializer += handler[:serialize].gsub('PREV_ARG', "a#{i - 1}").gsub('ARG', "a#{i}").gsub('BUF', "f#{i}") coroutine_initializer += "\n" transformed_args.add(i) buffers.append("f#{i}") end i += 1 end coroutine_vars = [] # If this is a varargs function, manually generate bindings for getting the varargs based on the function name if !args.empty? && args[-1] == '...' case func_name when 'rb_funcall' coroutine_initializer += <<~HEREDOC f#{args.length - 1} = bind.sandbox_malloc(a#{args.length - 2} * sizeof(VALUE)); if (f#{args.length - 1} == 0) throw SandboxOutOfMemoryException(); std::va_list a; va_start(a, a#{args.length - 2}); for (long i = 0; i < a#{args.length - 2}; ++i) { ((VALUE *)(bind.instance->w2c_memory.data + f#{args.length - 1}))[i] = va_arg(a, VALUE); } va_end(a); HEREDOC coroutine_initializer += "\n" buffers.append("f#{args.length - 1}") when 'rb_rescue2' coroutine_vars.append('wasm_size_t n') coroutine_initializer += <<~HEREDOC std::va_list a, b; va_start(a, a#{args.length - 2}); va_copy(b, a); n = 0; do ++n; while (va_arg(b, VALUE)); va_end(b); f#{args.length - 1} = bind.sandbox_malloc(n * sizeof(VALUE)); if (f#{args.length - 1} == 0) { va_end(a); throw SandboxOutOfMemoryException(); } for (wasm_size_t i = 0; i < n; ++i) { ((VALUE *)(bind.instance->w2c_memory.data + f#{args.length - 1}))[i] = va_arg(a, VALUE); } HEREDOC coroutine_initializer += "\n" buffers.append("f#{args.length - 1}") else next end end handler = RET_HANDLERS[ret] fields = (0...args.length).filter_map do |i| (args[i] == '...' || transformed_args.include?(i)) && "wasm_ptr_t f#{i}" end coroutine_ret = !RET_HANDLERS[ret][:keep] ? VAR_TYPE_TABLE[RET_HANDLERS[ret][:primitive]] : ret; coroutine_vars.append("#{coroutine_ret} r") if handler[:primitive] != :void coroutine_args = (0...args.length).map do |i| args[i] == '...' ? '...' : !ARG_HANDLERS[args[i]][:formatter].nil? ? ARG_HANDLERS[args[i]][:formatter].call("a#{i}") : !ARG_HANDLERS[args[i]][:keep] ? "#{VAR_TYPE_TABLE[ARG_HANDLERS[args[i]][:primitive]]} a#{i}" : "#{args[i]} a#{i}" end declaration_args = (0...args.length).map do |i| args[i] == '...' ? '...' : !ARG_HANDLERS[args[i]][:formatter].nil? ? ARG_HANDLERS[args[i]][:formatter].call('') : !ARG_HANDLERS[args[i]][:keep] ? "#{VAR_TYPE_TABLE[ARG_HANDLERS[args[i]][:primitive]]}" : "#{args[i]}" end coroutine_inner = <<~HEREDOC #{handler[:primitive] == :void ? '' : 'r = '}w2c_#{MODULE_NAME}_#{func_name}(#{(['bind.instance.get()'] + (0...args.length).map { |i| args[i] == '...' || transformed_args.include?(i) ? "f#{i}" : args[i] == 'VALUE' ? "SERIALIZE_VALUE(a#{i})" : args[i] == 'const rb_data_type_t *' ? "a#{i}.get()" : "a#{i}" }).join(', ')}); if (w2c_#{MODULE_NAME}_asyncify_get_state(bind.instance.get()) != 1) break; BOOST_ASIO_CORO_YIELD; HEREDOC coroutine_destructor = buffers.empty? ? '' : <<~HEREDOC #{func_name}::~#{func_name}() { #{(0...buffers.length).map { |i| " if (#{buffers[buffers.length - 1 - i]} != 0) try { bind.sandbox_free(#{buffers[buffers.length - 1 - i]}); } catch (SandboxTrapException) {}" }.join("\n")} } HEREDOC coroutine_definition = <<~HEREDOC #{coroutine_ret} #{func_name}::operator()(#{coroutine_args.join(', ')}) {#{coroutine_vars.empty? ? '' : (coroutine_vars.map { |var| "\n #{var} = 0;" }.join + "\n")} BOOST_ASIO_CORO_REENTER (this) { #{coroutine_initializer.empty? ? '' : (coroutine_initializer.split("\n").map { |line| " #{line}".rstrip }.join("\n") + "\n\n")} for (;;) { #{coroutine_inner.split("\n").map { |line| " #{line}" }.join("\n")} } }#{handler[:primitive] == :void ? '' : ret == 'VALUE' ? "\n\n return SERIALIZE_VALUE(r);" : "\n\n return r;"} }#{coroutine_destructor.empty? ? '' : ("\n" + coroutine_destructor)} HEREDOC coroutine_declaration = <<~HEREDOC struct #{func_name} : boost::asio::coroutine { friend struct bindings; friend struct bindings::stack_frame_guard; BOOST_TYPE_INDEX_REGISTER_CLASS #{coroutine_ret} operator()(#{declaration_args.join(', ')}); #{coroutine_destructor.empty? ? '' : "~#{func_name}();\n "}private: struct bindings &bind; inline #{func_name}(struct bindings &b) : #{(['bind(b)'] + buffers.map { |buffer| "#{buffer}(0)" }).join(', ')} {} #{fields.empty? ? '' : fields.map { |field| " #{field};\n" }.join}}; HEREDOC func_names.append(func_name) coroutines.append(coroutine_definition) declarations.append(coroutine_declaration) end File.open('mkxp-sandbox-bindgen.h', 'w') do |file| file.write(HEADER_START) for global_name in globals file.write(" inline VALUE #{global_name}() const noexcept { return *(VALUE *)(instance->w2c_memory.data + instance->w2c_#{global_name}); }\n") end for func_name in func_names file.write(" friend struct #{func_name};\n") end file.write(" };") for declaration in declarations file.write("\n\n" + declaration.split("\n").map { |line| " #{line}" }.join("\n").rstrip) end file.write("\n\n") file.write("#if WABT_BIG_ENDIAN\n") for const in consts file.write("#define SANDBOX_#{const[0]} 0x#{[const[1]].pack(MEMORY64 ? 'Q<' : 'L<').unpack('H*')[0]}u\n") end file.write("#else\n") for const in consts file.write("#define SANDBOX_#{const[0]} 0x#{[const[1]].pack(MEMORY64 ? 'Q>' : 'L>').unpack('H*')[0]}u\n") end file.write("#endif\n") file.write(HEADER_END) end File.open('mkxp-sandbox-bindgen.cpp', 'w') do |file| file.write(PRELUDE) for call_binding in call_bindings file.write("\n\n") file.write(call_binding.rstrip + "\n") end for coroutine in coroutines file.write("\n\n") file.write(coroutine.rstrip + "\n") end file.write(POSTSCRIPT) end