mirror of
https://github.com/kolbytn/mindcraft.git
synced 2025-07-20 06:55:18 +02:00
94 lines
No EOL
3.1 KiB
JavaScript
94 lines
No EOL
3.1 KiB
JavaScript
import { cosineSimilarity } from './math.js';
|
|
import { stringifyTurns } from './text.js';
|
|
|
|
export class Examples {
|
|
constructor(model, select_num=2) {
|
|
this.examples = [];
|
|
this.model = model;
|
|
this.select_num = select_num;
|
|
this.embeddings = {};
|
|
}
|
|
|
|
turnsToText(turns) {
|
|
let messages = '';
|
|
for (let turn of turns) {
|
|
if (turn.role !== 'assistant')
|
|
messages += turn.content.substring(turn.content.indexOf(':')+1).trim() + '\n';
|
|
}
|
|
return messages.trim();
|
|
}
|
|
|
|
getWords(text) {
|
|
return text.replace(/[^a-zA-Z ]/g, '').toLowerCase().split(' ');
|
|
}
|
|
|
|
wordOverlapScore(text1, text2) {
|
|
const words1 = this.getWords(text1);
|
|
const words2 = this.getWords(text2);
|
|
const intersection = words1.filter(word => words2.includes(word));
|
|
return intersection.length / (words1.length + words2.length - intersection.length);
|
|
}
|
|
|
|
async load(examples) {
|
|
this.examples = examples;
|
|
if (!this.model) return; // Early return if no embedding model
|
|
|
|
if (this.select_num === 0)
|
|
return;
|
|
|
|
try {
|
|
// Create array of promises first
|
|
const embeddingPromises = examples.map(example => {
|
|
const turn_text = this.turnsToText(example);
|
|
return this.model.embed(turn_text)
|
|
.then(embedding => {
|
|
this.embeddings[turn_text] = embedding;
|
|
});
|
|
});
|
|
|
|
// Wait for all embeddings to complete
|
|
await Promise.all(embeddingPromises);
|
|
} catch (err) {
|
|
console.warn('Error with embedding model, using word overlap instead:', err);
|
|
this.model = null;
|
|
}
|
|
}
|
|
|
|
async getRelevant(turns) {
|
|
if (this.select_num === 0)
|
|
return [];
|
|
|
|
let turn_text = this.turnsToText(turns);
|
|
if (this.model !== null) {
|
|
let embedding = await this.model.embed(turn_text);
|
|
this.examples.sort((a, b) =>
|
|
cosineSimilarity(embedding, this.embeddings[this.turnsToText(b)]) -
|
|
cosineSimilarity(embedding, this.embeddings[this.turnsToText(a)])
|
|
);
|
|
}
|
|
else {
|
|
this.examples.sort((a, b) =>
|
|
this.wordOverlapScore(turn_text, this.turnsToText(b)) -
|
|
this.wordOverlapScore(turn_text, this.turnsToText(a))
|
|
);
|
|
}
|
|
let selected = this.examples.slice(0, this.select_num);
|
|
return JSON.parse(JSON.stringify(selected)); // deep copy
|
|
}
|
|
|
|
async createExampleMessage(turns) {
|
|
let selected_examples = await this.getRelevant(turns);
|
|
|
|
console.log('selected examples:');
|
|
for (let example of selected_examples) {
|
|
console.log('Example:', example[0].content)
|
|
}
|
|
|
|
let msg = 'Examples of how to respond:\n';
|
|
for (let i=0; i<selected_examples.length; i++) {
|
|
let example = selected_examples[i];
|
|
msg += `Example ${i+1}:\n${stringifyTurns(example)}\n\n`;
|
|
}
|
|
return msg;
|
|
}
|
|
} |