mindcraft/src/agent/construction_tasks.js
2025-02-25 15:39:26 -08:00

947 lines
36 KiB
JavaScript

import {Vec3} from 'vec3';
export class ConstructionTaskValidator {
constructor(data, agent) {
this.blueprint = new Blueprint(data.blueprint);
this.agent = agent;
}
validate() {
try {
//todo: somehow make this more of a percentage or something
console.log('Validating task...');
let valid = false;
let score = 0;
let result = this.blueprint.check(this.agent.bot);
if (result.mismatches.length === 0) {
valid = true;
console.log('Task is complete');
}
let total_blocks = result.mismatches.length + result.matches.length;
score = (result.matches.length / total_blocks) * 100;
console.log(`Task is ${score}% complete`);
return valid;
} catch (error) {
console.error('Error validating task:', error);
return false;
}
}
}
export function resetConstructionWorld(bot, blueprint) {
console.log('Resetting world...');
const starting_position = blueprint.levels[0].coordinates;
const length = blueprint.levels[0].placement.length + 5;
const height = blueprint.levels.length + 5;
const width = blueprint.levels[0].placement[0].length + 5;
const command = `/fill ${starting_position[0]} ${starting_position[1]} ${starting_position[2]} ${starting_position[0] + width} ${starting_position[1] + height} ${starting_position[2] + length} air`;
bot.chat(command);
console.log('World reset');
}
export function checkLevelBlueprint(agent, levelNum) {
const blueprint = agent.task.blueprint;
const bot = agent.bot;
const result = blueprint.checkLevel(bot, levelNum);
if (result.mismatches.length === 0) {
return `Level ${levelNum} is correct`;
} else {
let explanation = blueprint.explainLevelDifference(bot, levelNum);
return explanation;
}
}
export function checkBlueprint(agent) {
console.log('Checking blueprint...');
console.log(agent);
const blueprint = agent.task.blueprint;
const bot = agent.bot;
const result = blueprint.check(bot);
if (result.mismatches.length === 0) {
return "Blueprint is correct";
} else {
let explanation = blueprint.explainBlueprintDifference(bot);
return explanation;
}
}
export class Blueprint {
constructor(blueprint) {
this.data = blueprint;
}
explain() {
var explanation = "";
// todo: we need to limit this to be a certain amount of levels to not overload memory...
for (let item of this.data.levels) {
var coordinates = item.coordinates;
explanation += `Level ${item.level}: `;
explanation += `Start at coordinates X: ${coordinates[0]}, Y: ${coordinates[1]}, Z: ${coordinates[2]}`;
// let placement_string = this._getPlacementString(item.placement);
// explanation += `\n${placement_string}\n`;
}
return explanation;
}
_getPlacementString(placement) {
var placement_string = "[\n";
for (let row of placement) {
placement_string += "[";
for (let i = 0; i < row.length - 1; i++) {
let item = row[i];
placement_string += `${item}, `;
}
let final_item = row[row.length - 1];
placement_string += `${final_item}],\n`;
}
placement_string += "]";
return placement_string;
}
explainLevel(levelNum) {
const levelData = this.data.levels[levelNum];
var explanation = `Level ${levelData.level} `;
explanation += `starting at coordinates X: ${levelData.coordinates[0]}, Y: ${levelData.coordinates[1]}, Z: ${levelData.coordinates[2]}`;
let placement_string = this._getPlacementString(levelData.placement);
explanation += `\n${placement_string}\n`;
return explanation;
}
explainBlueprintDifference(bot) {
var explanation = "";
const levels = this.data.levels;
for (let i = 0; i < levels.length; i++) {
let level_explanation = this.explainLevelDifference(bot, i);
explanation += level_explanation + "\n";
}
return explanation;
}
explainLevelDifference(bot, levelNum) {
const results = this.checkLevel(bot, levelNum);
const mismatches = results.mismatches;
const levelData = this.data.levels[levelNum];
if (mismatches.length === 0) {
return `Level ${levelData.level} is complete`;
}
var explanation = `Level ${levelData.level} `;
// explanation += `at coordinates X: ${levelData.coordinates[0]}, Y: ${levelData.coordinates[1]}, Z: ${levelData.coordinates[2]}`;
explanation += " requires the following fixes:\n";
for (let item of mismatches) {
if (item.actual === 'air') {
explanation += `Place ${item.expected} at coordinates X: ${item.coordinates[0]}, Y: ${item.coordinates[1]}, Z: ${item.coordinates[2]}\n`;
} else if (item.expected === 'air') {
explanation += `Remove the ${item.actual} at coordinates X: ${item.coordinates[0]}, Y: ${item.coordinates[1]}, Z: ${item.coordinates[2]}\n`;
} else {
explanation += `Replace the ${item.actual} with a ${item.expected} at coordinates X: ${item.coordinates[0]}, Y: ${item.coordinates[1]}, Z: ${item.coordinates[2]} \n`;
}
}
return explanation;
}
check(bot) {
if (!bot || typeof bot !== 'object' || !bot.hasOwnProperty('blockAt')) {
throw new Error('Invalid bot object. Expected a mineflayer bot.');
}
const levels = this.data.levels;
const mismatches = [];
const matches = [];
for (let i = 0; i < levels.length; i++) {
const result = this.checkLevel(bot, i);
mismatches.push(...result.mismatches);
matches.push(...result.matches);
}
return {
"mismatches": mismatches,
"matches": matches
};
}
checkLevel(bot, levelNum) {
const levelData = this.data.levels[levelNum];
const startCoords = levelData.coordinates;
const placement = levelData.placement;
const mismatches = [];
const matches = [];
for (let zOffset = 0; zOffset < placement.length; zOffset++) {
const row = placement[zOffset];
for (let xOffset = 0; xOffset < row.length; xOffset++) {
const blockName = row[xOffset];
const x = startCoords[0] + xOffset;
const y = startCoords[1];
const z = startCoords[2] + zOffset;
try {
const blockAtLocation = bot.blockAt(new Vec3(x, y, z));
const actualBlockName = blockAtLocation ? bot.registry.blocks[blockAtLocation.type].name : "air";
// Skip if both expected and actual block are air
if (blockName === "air" && actualBlockName === "air") {
continue;
}
if (actualBlockName !== blockName) {
mismatches.push({
level: levelData.level,
coordinates: [x, y, z],
expected: blockName,
actual: actualBlockName
});
} else {
matches.push({
level: levelData.level,
coordinates: [x, y, z],
expected: blockName,
actual: actualBlockName
});
}
} catch (err) {
console.error(`Error getting block at (${x}, ${y}, ${z}):`, err);
return false; // Stop checking if there's an issue getting blocks
}
}
}
return {
"mismatches": mismatches,
"matches": matches
};
}
/**
* Takes in the blueprint, and then converts it into a set of /setblock commands for the bot to follow
* @Returns: An object containing the setblock commands as a list of strings, and a position nearby the blueprint but not in it
* @param blueprint
*/
autoBuild() {
const commands = [];
let blueprint = this.data
let minX = Infinity, maxX = -Infinity;
let minY = Infinity, maxY = -Infinity;
let minZ = Infinity, maxZ = -Infinity;
for (const level of blueprint.levels) {
console.log(level.level)
const baseX = level.coordinates[0];
const baseY = level.coordinates[1];
const baseZ = level.coordinates[2];
const placement = level.placement;
// Update bounds
minX = Math.min(minX, baseX);
maxX = Math.max(maxX, baseX + placement[0].length - 1);
minY = Math.min(minY, baseY);
maxY = Math.max(maxY, baseY);
minZ = Math.min(minZ, baseZ);
maxZ = Math.max(maxZ, baseZ + placement.length - 1);
// Loop through the 2D placement array
for (let z = 0; z < placement.length; z++) {
for (let x = 0; x < placement[z].length; x++) {
const blockType = placement[z][x];
if (blockType) {
const setblockCommand = `/setblock ${baseX + x} ${baseY} ${baseZ + z} ${blockType}`;
commands.push(setblockCommand);
}
}
}
}
// Calculate a position nearby the blueprint but not in it
const nearbyPosition = {
x: maxX + 5, // Move 5 blocks to the right
y: minY, // Stay on the lowest level of the blueprint
z: minZ // Stay aligned with the front of the blueprint
};
return { commands, nearbyPosition };
}
/**
* Takes in a blueprint, and returns a set of commands to clear up the space.
*
*/
autoDelete() {
const commands = [];
let blueprint = this.data
let minX = Infinity, maxX = -Infinity;
let minY = Infinity, maxY = -Infinity;
let minZ = Infinity, maxZ = -Infinity;
for (const level of blueprint.levels) {
const baseX = level.coordinates[0];
const baseY = level.coordinates[1];
const baseZ = level.coordinates[2];
const placement = level.placement;
// Update bounds
minX = Math.min(minX, baseX);
maxX = Math.max(maxX, baseX + placement[0].length - 1);
minY = Math.min(minY, baseY);
maxY = Math.max(maxY, baseY);
minZ = Math.min(minZ, baseZ);
maxZ = Math.max(maxZ, baseZ + placement.length - 1);
// Loop through the 2D placement array
for (let z = 0; z < placement.length; z++) {
for (let x = 0; x < placement[z].length; x++) {
const blockType = placement[z][x];
if (blockType) {
const setblockCommand = `/setblock ${baseX + x} ${baseY} ${baseZ + z} air`;
commands.push(setblockCommand);
}
}
}
}
// Calculate a position nearby the blueprint but not in it
const nearbyPosition = {
x: maxX + 5, // Move 5 blocks to the right
y: minY, // Stay on the lowest level of the blueprint
z: minZ // Stay aligned with the front of the blueprint
};
return { commands, nearbyPosition };
}
}
/**
* Systematically builds the houses by placing them next to the already existing rooms. Still uses randomness for what gets placed next.
* @param m width of the 3D space
* @param n height of the 3D space
* @param p depth of the 3D space
* @param rooms Number of rooms to attempt to generate
* @param minRoomWidth
* @param minRoomLength
* @param minRoomDepth
* @param roomVariance How much the room size will vary
* @param wrapping material of wrapping (air, glass, etc...) -> default is air
* @param carpetStyle 0,1,2 increasingly more complex
* @param windowStyle 0,1,2 increasingly more complex
* @param complexity 0,1,2,3,4 for increasingly complex materials for room generation
* @returns a blueprint object
*/
export function proceduralGeneration(m = 20,
n = 20,
p = 20,
rooms = 8,
minRoomWidth = 5,
minRoomLength = 5,
minRoomDepth = 6,
roomVariance = 5,
wrapping = "air",
carpetStyle = 1,
windowStyle = 1,
complexity = 4) {
// Build 3D space
const matrix = Array.from({length: p}, () =>
Array.from({length: m}, () =>
Array(n).fill('air')
)
);
// set materials
let roomMaterials = ["stone", "terracotta", "quartz_block", "copper_block", "purpur_block"]
if (complexity < roomMaterials.length) {
roomMaterials = roomMaterials.slice(0, complexity + 1);
}
// Mark entire outer border with 'stone'
for (let z = 0; z < p; z++) {
for (let x = 0; x < m; x++) {
for (let y = 0; y < n; y++) {
if (
z === 0 || z === p - 1 || // Top and bottom faces
x === 0 || x === m - 1 || // Front and back faces
y === 0 || y === n - 1 // Left and right faces
) {
matrix[z][x][y] = 'stone';
}
}
}
}
// Replace outer layer with wrap
for (let z = 0; z < p; z++) {
for (let x = 0; x < m; x++) {
for (let y = 0; y < n; y++) {
if (
(z === p - 1 || // Top face
x === 0 || x === m - 1 || // Front and back faces
y === 0 || y === n - 1) // Left and right faces
) {
matrix[z][x][y] = wrapping;
}
}
}
}
let placedRooms = 0;
let lastRoom = null;
// Direction probabilities (e.g., 'above': 40%, 'left': 15%, etc.)
const directionChances = [
{direction: 'above', chance: 0.15},
{direction: 'left', chance: 0.15},
{direction: 'right', chance: 0.15},
{direction: 'forward', chance: 0.15},
{direction: 'backward', chance: 0.15},
];
// Function to pick a random direction based on percentages
function getRandomDirection() {
const rand = Math.random();
let cumulative = 0;
for (const {direction, chance} of directionChances) {
cumulative += chance;
if (rand <= cumulative) return direction;
}
return directionChances[1].direction; // Fallback to the first direction
}
// Ensures no rooms overlap except at edges
function isSpaceValid(newX, newY, newZ, newLength, newWidth, newDepth) {
for (let di = 0; di < newDepth; di++) {
for (let dj = 0; dj < newLength; dj++) {
for (let dk = 0; dk < newWidth; dk++) {
const x = newX + dj;
const y = newY + dk;
const z = newZ + di;
// Skip checking the outermost borders of the new room (these can overlap with stone)
if (dj === 0 || dj === newLength - 1 ||
dk === 0 || dk === newWidth - 1 ||
di === 0 || di === newDepth - 1) {
continue;
}
// For non-border spaces, ensure they're air
if (matrix[z][x][y] !== 'air') {
return false;
}
}
}
}
return true;
}
function validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material) {
// Allow rooms to use the matrix edges (note the <= instead of <)
if (
newX >= 0 && newX + newLength <= m &&
newY >= 0 && newY + newWidth <= n &&
newZ >= 0 && newZ + newDepth <= p &&
isSpaceValid(newX, newY, newZ, newLength, newWidth, newDepth)
) {
console.log(`Placing room at (${newX}, ${newY}, ${newZ}) with dimensions (${newLength}x${newWidth}x${newDepth})`);
for (let di = 0; di < newDepth; di++) {
for (let dj = 0; dj < newLength; dj++) {
for (let dk = 0; dk < newWidth; dk++) {
const x = newX + dj;
const y = newY + dk;
const z = newZ + di;
// If this is at a matrix border, don't modify it
if (z === 0) {
continue;
}
// if (x === 0 || x === m - 1 ||
// y === 0 || y === n - 1 ||
// z === 0 || z === p - 1) {
// continue;
// }
// For non-border spaces, check if this is a floor that should be shared
//was: === 'stone'
if (di === 0 && matrix[z - 1][x][y] !== 'air') {
// Skip creating floor if there's a ceiling below
matrix[z][x][y] = 'air';
} else if (di === 0 || di === newDepth - 1 ||
dj === 0 || dj === newLength - 1 ||
dk === 0 || dk === newWidth - 1) {
matrix[z][x][y] = material;
} else {
matrix[z][x][y] = 'air';
}
}
}
}
return true;
}
return false;
}
function addDoor(matrix, x, y, z, material) {
matrix[z][x][y] = material;
// Place the lower half of the door
matrix[z + 1][x][y] = 'dark_oak_door[half=lower, hinge=left]';
// Place the upper half of the door
matrix[z + 2][x][y] = 'dark_oak_door[half=upper, hinge=left]';
}
// Takes in a room and randomly converts some faces to be windows
function addWindowsAsSquares(matrix, x, y, z, newLength, newWidth, newDepth, material) {
// Matrix dimensions
const matrixDepth = matrix.length;
const matrixLength = matrix[0].length;
const matrixWidth = matrix[0][0].length;
const windowX = Math.ceil(minRoomWidth / 2)
const windowY = Math.ceil(minRoomLength / 2)
const windowZ = Math.ceil(minRoomDepth / 2)
// Helper function to check if coordinates are within bounds
function isInBounds(z, x, y) {
return z >= 0 && z < matrixDepth &&
x >= 0 && x < matrixLength &&
y >= 0 && y < matrixWidth;
}
// Front and back faces (z is constant)
if (Math.random() < 0.8) {
let centerX = x + Math.floor(newLength / 2 - windowX / 2);
let centerY = y + Math.floor(newWidth / 2 - windowY / 2);
for (let dx = 0; dx <= windowX; dx++) {
for (let dy = 0; dy <= windowY; dy++) {
let frontZ = z;
let backZ = z + newDepth - 1;
if (isInBounds(frontZ, centerX + dx, centerY + dy) &&
matrix[frontZ][centerX + dx][centerY + dy] === material) {
matrix[frontZ][centerX + dx][centerY + dy] = 'glass';
}
if (isInBounds(backZ, centerX + dx, centerY + dy) &&
matrix[backZ][centerX + dx][centerY + dy] === material) {
matrix[backZ][centerX + dx][centerY + dy] = 'glass';
}
}
}
}
// Left and right faces (x is constant)
if (Math.random() < 0.8) {
let centerZ = z + Math.floor(newDepth / 2 - windowZ / 2);
let centerY = y + Math.floor(newWidth / 2 - windowY / 2);
for (let dz = 0; dz <= windowZ; dz++) {
for (let dy = 0; dy <= windowY; dy++) {
let leftX = x;
let rightX = x + newLength - 1;
if (isInBounds(centerZ + dz, leftX, centerY + dy) &&
matrix[centerZ + dz][leftX][centerY + dy] === material) {
matrix[centerZ + dz][leftX][centerY + dy] = 'glass';
}
if (isInBounds(centerZ + dz, rightX, centerY + dy) &&
matrix[centerZ + dz][rightX][centerY + dy] === material) {
matrix[centerZ + dz][rightX][centerY + dy] = 'glass';
}
}
}
}
// Top and bottom faces (y is constant)
if (Math.random() < 0.8) {
let centerX = x + Math.floor(newLength / 2 - windowX / 2);
let centerZ = z + Math.floor(newDepth / 2 - windowZ / 2);
for (let dx = 0; dx <= windowX; dx++) {
for (let dz = 0; dz <= windowZ; dz++) {
let bottomY = y;
let topY = y + newWidth - 1;
if (isInBounds(centerZ + dz, centerX + dx, bottomY) &&
matrix[centerZ + dz][centerX + dx][bottomY] === material) {
matrix[centerZ + dz][centerX + dx][bottomY] = 'glass';
}
if (isInBounds(centerZ + dz, centerX + dx, topY) &&
matrix[centerZ + dz][centerX + dx][topY] === material) {
matrix[centerZ + dz][centerX + dx][topY] = 'glass';
}
}
}
}
}
function addWindowsAsPlane(matrix, x, y, z, newLength, newWidth, newDepth, material) {
// Ensure the new dimensions are within bounds
const maxX = matrix[0].length;
const maxY = matrix[0][0].length;
const maxZ = matrix.length;
// Each face has a 30% chance of becoming a window
if (Math.random() < 0.8) {
for (let dx = 0; dx < newLength; dx++) {
for (let dy = 0; dy < newWidth; dy++) {
let frontZ = z;
let backZ = z + newDepth - 1;
// Check bounds before modifying the matrix
if (frontZ >= 0 && frontZ < maxZ && x + dx >= 0 && x + dx < maxX && y + dy >= 0 && y + dy < maxY) {
if (matrix[frontZ][x + dx][y + dy] === material) {
matrix[frontZ][x + dx][y + dy] = 'glass';
}
}
if (backZ >= 0 && backZ < maxZ && x + dx >= 0 && x + dx < maxX && y + dy >= 0 && y + dy < maxY) {
if (matrix[backZ][x + dx][y + dy] === material) {
matrix[backZ][x + dx][y + dy] = 'glass';
}
}
}
}
}
if (Math.random() < 0.8) {
for (let dz = 0; dz < newDepth; dz++) {
for (let dy = 0; dy < newWidth; dy++) {
let leftX = x;
let rightX = x + newLength - 1;
// Check bounds before modifying the matrix
if (leftX >= 0 && leftX < maxX && z + dz >= 0 && z + dz < maxZ && y + dy >= 0 && y + dy < maxY) {
if (matrix[z + dz][leftX][y + dy] === material) {
matrix[z + dz][leftX][y + dy] = 'glass';
}
}
if (rightX >= 0 && rightX < maxX && z + dz >= 0 && z + dz < maxZ && y + dy >= 0 && y + dy < maxY) {
if (matrix[z + dz][rightX][y + dy] === material) {
matrix[z + dz][rightX][y + dy] = 'glass';
}
}
}
}
}
}
// out of commission
function addStairs(matrix, x, y, z, direction) {
let dz = 0; // Change in Z direction
let dx = 0; // Change in X direction
let facing = '';
// Determine direction and facing
switch (direction) {
case 'north':
dz = -1;
facing = 'oak_stairs[facing=north]';
break;
case 'south':
dz = 1;
facing = 'oak_stairs[facing=south]';
break;
case 'east':
dx = 1;
facing = 'oak_stairs[facing=east]';
break;
case 'west':
dx = -1;
facing = 'oak_stairs[facing=west]';
break;
default:
console.error('Invalid stair direction');
return;
}
// Bore stair pattern downwards until we hit a floor or the matrix edge
let currentZ = z;
while (currentZ > 0 && matrix[currentZ - 1][x][y] === 'air') {
// Place stone as foundation
matrix[currentZ - 1][x][y] = 'stone';
// Place stair above the stone
matrix[currentZ][x][y] = facing;
// Move down diagonally
x += dx;
y += dz;
currentZ--;
// Check if we've hit the edge
if (x < 0 || x >= matrix[0].length || y < 0 || y >= matrix[0][0].length) break;
}
}
function addCarpet(probability, matrix, newX, newY, newZ, newLength, newWidth, material) {
let colors = ["blue", "cyan", "light_blue", "lime"];
// Iterate through the dimensions of the room
for (let dx = 1; dx < newLength - 1; dx++) {
for (let dy = 1; dy < newWidth - 1; dy++) {
let x = newX + dx;
let y = newY + dy;
let z = newZ; // Start at floor level
// Check if there is floor (not air)
if (matrix[z][x][y] === material) {
// Consider a random probability of adding a carpet
if (Math.random() < probability) {
// Choose a random color for the carpet
let randomColor = colors[Math.floor(Math.random() * colors.length)];
// Add carpet one z position above the floor with a random color
matrix[z + 1][x][y] = `${randomColor}_carpet`;
}
}
}
}
}
function addLadder(matrix, x, y, z) {
let currentZ = z + 1;
// turn the floor into air where person would go up
matrix[currentZ][x + 1][y] = 'air';
// Build the first 3 ladder segments from floor level downwards
for (let i = 0; i < 3; i++) {
matrix[currentZ][x][y] = 'ladder[facing=north]';
currentZ -= 1
}
// Continue building ladder downwards until a floor is hit or we reach the bottom
while (currentZ >= 0 && matrix[currentZ][x][y] === 'air') {
// Place ladder
matrix[currentZ][x][y] = 'ladder[facing=north]';
// Move down
currentZ--;
}
}
function embellishments(carpet, windowStyle, matrix, newX, newY, newZ, newLength, newWidth, newDepth, material) {
switch (windowStyle) {
case 0:
break;
case 1:
addWindowsAsSquares(matrix, newZ, newY, newZ, newLength, newWidth, newDepth, material)
break;
case 2:
addWindowsAsPlane(matrix, newZ, newY, newZ, newLength, newWidth, newDepth, material)
}
switch (carpet) {
case 0:
break;
case 1:
addCarpet(0.3, matrix, newX, newY, newZ, newLength, newWidth, material);
break;
case 2:
addCarpet(0.7, matrix, newX, newY, newZ, newLength, newWidth, material)
break;
}
}
// Places rooms until we can't, or we place all
// attempts random configurations of rooms in random directions.
while (placedRooms < rooms) {
let roomPlaced = false;
for (let attempt = 0; attempt < 150; attempt++) {
const material = roomMaterials[Math.floor(Math.random() * roomMaterials.length)];
// dimensions of room
const newLength = Math.max(minRoomLength, Math.floor(Math.random() * roomVariance) + minRoomLength);
const newWidth = Math.max(minRoomWidth, Math.floor(Math.random() * roomVariance) + minRoomWidth);
const newDepth = Math.max(minRoomDepth, Math.floor(Math.random() * Math.floor(roomVariance / 2)) + minRoomDepth);
let newX, newY, newZ;
// first room is special
if (placedRooms === 0) {
// First room placement
newX = Math.floor(Math.random() * (m - newLength - 1)) + 1;
newY = Math.floor(Math.random() * (n - newWidth - 1)) + 1;
newZ = 0; // Ground floor
if (validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material)) {
lastRoom = {x: newX, y: newY, z: newZ, length: newLength, width: newWidth, depth: newDepth};
roomPlaced = true;
placedRooms++;
// Add doors to all four sides
// Left side
addDoor(matrix, newX, newY + Math.floor(newWidth / 2), newZ, material);
// Right side
addDoor(matrix, newX + newLength - 1, newY + Math.floor(newWidth / 2), newZ, material);
// Front side
addDoor(matrix, newX + Math.floor(newLength / 2), newY, newZ, material);
// Back side
addDoor(matrix, newX + Math.floor(newLength / 2), newY + newWidth - 1, newZ, material);
addCarpet(0.7, matrix, newX, newY, newZ, newLength, newWidth)
}
break;
} else {
const direction = getRandomDirection();
switch (direction) {
case 'above':
newX = lastRoom.x;
newY = lastRoom.y;
newZ = lastRoom.z + lastRoom.depth - 1;
if (validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material)) {
embellishments(carpetStyle, windowStyle, matrix, newX, newY, newZ, newLength, newWidth, newDepth, material)
addLadder(matrix, lastRoom.x + Math.floor(lastRoom.length / 2),
lastRoom.y + Math.floor(lastRoom.width / 2),
newZ); // Adding the ladder
lastRoom = {x: newX, y: newY, z: newZ, length: newLength, width: newWidth, depth: newDepth};
roomPlaced = true;
placedRooms++;
break;
}
break;
case 'left':
newX = lastRoom.x - newLength + 1;
newY = lastRoom.y;
newZ = lastRoom.z;
if (validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material)) {
embellishments(carpetStyle, windowStyle, matrix, newX, newY, newZ, newLength, newWidth, newDepth, material)
addDoor(matrix, lastRoom.x, lastRoom.y + Math.floor(lastRoom.width / 2), lastRoom.z, material);
lastRoom = {x: newX, y: newY, z: newZ, length: newLength, width: newWidth, depth: newDepth};
roomPlaced = true;
placedRooms++;
break;
}
break;
case 'right':
newX = lastRoom.x + lastRoom.length - 1;
newY = lastRoom.y;
newZ = lastRoom.z;
if (validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material)) {
embellishments(carpetStyle, windowStyle, matrix, newX, newY, newZ, newLength, newWidth, newDepth, material)
addDoor(matrix, lastRoom.x + lastRoom.length - 1,
lastRoom.y + Math.floor(lastRoom.width / 2),
lastRoom.z, material);
lastRoom = {x: newX, y: newY, z: newZ, length: newLength, width: newWidth, depth: newDepth};
roomPlaced = true;
placedRooms++;
break;
}
break;
case 'forward':
newX = lastRoom.x;
newY = lastRoom.y + lastRoom.width - 1;
newZ = lastRoom.z;
if (validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material)) {
embellishments(carpetStyle, windowStyle, matrix, newX, newY, newZ, newLength, newWidth, newDepth, material)
addDoor(matrix, lastRoom.x + Math.floor(lastRoom.length / 2),
lastRoom.y + lastRoom.width - 1,
lastRoom.z, material);
lastRoom = {x: newX, y: newY, z: newZ, length: newLength, width: newWidth, depth: newDepth};
roomPlaced = true;
placedRooms++;
break;
}
break;
case 'backward':
newX = lastRoom.x;
newY = lastRoom.y - newWidth + 1;
newZ = lastRoom.z;
if (validateAndBuildBorder(matrix, newX, newY, newZ, newLength, newWidth, newDepth, m, n, p, material)) {
embellishments(carpetStyle, windowStyle, matrix, newX, newY, newZ, newLength, newWidth, newDepth, material)
addDoor(matrix, lastRoom.x + Math.floor(lastRoom.length / 2),
lastRoom.y,
lastRoom.z, material);
lastRoom = {x: newX, y: newY, z: newZ, length: newLength, width: newWidth, depth: newDepth};
roomPlaced = true;
placedRooms++;
break;
}
break;
}
if (roomPlaced) {
break;
}
}
}
if (!roomPlaced) {
console.warn(`Could not place room ${placedRooms + 1}`);
break;
}
}
return matrixToBlueprint(matrix, [148,-60,-170])
}
/**
* Converts a 3D matrix into a Minecraft blueprint format
* @param {Array<Array<Array<string>>>} matrix - 3D matrix of block types
* @param {number[]} startCoord - Starting coordinates [x, y, z]
* @returns {Object} a Blueprint object in Minecraft format
*/
function matrixToBlueprint(matrix, startCoord) {
// Validate inputs
if (!Array.isArray(matrix) || !Array.isArray(startCoord) || startCoord.length !== 3) {
console.log(matrix)
throw new Error('Invalid input format');
}
const [startX, startY, startZ] = startCoord;
// CONSIDER: using blueprint class here?
return {
levels: matrix.map((level, levelIndex) => ({
level: levelIndex,
coordinates: [
startX,
startY + levelIndex,
startZ
],
placement: level.map(row =>
// Ensure each block is a string, default to 'air' if undefined
row.map(block => block?.toString() || 'air')
)
}))
};
}