import OpenAIApi from 'openai'; import { getKey, hasKey } from '../utils/keys.js'; import { strictFormat } from '../utils/text.js'; export class Mercury { static prefix = 'mercury'; constructor(model_name, url, params) { this.model_name = model_name; this.params = params; let config = {}; if (url) config.baseURL = url; else config.baseURL = "https://api.inceptionlabs.ai/v1"; config.apiKey = getKey('MERCURY_API_KEY'); this.openai = new OpenAIApi(config); } async sendRequest(turns, systemMessage, stop_seq='***') { if (typeof stop_seq === 'string') { stop_seq = [stop_seq]; } else if (!Array.isArray(stop_seq)) { stop_seq = []; } let messages = [{'role': 'system', 'content': systemMessage}].concat(turns); messages = strictFormat(messages); const pack = { model: this.model_name || "mercury-coder-small", messages, stop: stop_seq, ...(this.params || {}) }; let res = null; try { console.log('Awaiting mercury api response from model', this.model_name) // console.log('Messages:', messages); let completion = await this.openai.chat.completions.create(pack); if (completion.choices[0].finish_reason == 'length') throw new Error('Context length exceeded'); console.log('Received.') res = completion.choices[0].message.content; } catch (err) { if ((err.message == 'Context length exceeded' || err.code == 'context_length_exceeded') && turns.length > 1) { console.log('Context length exceeded, trying again with shorter context.'); return await this.sendRequest(turns.slice(1), systemMessage, stop_seq); } else if (err.message.includes('image_url')) { console.log(err); res = 'Vision is only supported by certain models.'; } else { console.log(err); res = 'My brain disconnected, try again.'; } } return res; } async sendVisionRequest(messages, systemMessage, imageBuffer) { const imageMessages = [...messages]; imageMessages.push({ role: "user", content: [ { type: "text", text: systemMessage }, { type: "image_url", image_url: { url: `data:image/jpeg;base64,${imageBuffer.toString('base64')}` } } ] }); return this.sendRequest(imageMessages, systemMessage); } async embed(text) { if (text.length > 8191) text = text.slice(0, 8191); const embedding = await this.openai.embeddings.create({ model: this.model_name || "text-embedding-3-small", input: text, encoding_format: "float", }); return embedding.data[0].embedding; } }