mirror of
https://github.com/kolbytn/mindcraft.git
synced 2025-07-25 01:15:24 +02:00
Updates on construction and cooking tasks, prettyTable, flexibility to enter multiple folders, ....
This commit is contained in:
parent
63e7861c4f
commit
d39b254a06
2 changed files with 200 additions and 190 deletions
|
@ -9,11 +9,11 @@ def extract_success_scores(folders, model_names):
|
|||
|
||||
all_task_scores = defaultdict(dict) # Stores task-wise scores per model
|
||||
zero_score_tasks = defaultdict(list) # Stores tasks with 0 score per model
|
||||
null_score_tasks = defaultdict(list) # Stores tasks with null score per model
|
||||
material_groups = defaultdict(lambda: defaultdict(list))
|
||||
room_groups = defaultdict(lambda: defaultdict(list))
|
||||
material_room_groups = defaultdict(lambda: defaultdict(list))
|
||||
overall_scores = defaultdict(list) # New dict to store all scores for each model
|
||||
skipped_tasks = defaultdict(list) # Stores tasks with no score message per model
|
||||
|
||||
pattern = re.compile(r"materials_(\d+)_rooms_(\d+)")
|
||||
|
||||
|
@ -50,22 +50,22 @@ def extract_success_scores(folders, model_names):
|
|||
print(f"Error reading {file_path}: {e}")
|
||||
|
||||
if logs_found and not score_found:
|
||||
# Score not found but logs exist - mark as null
|
||||
all_task_scores[task_folder][model_name] = None
|
||||
null_score_tasks[model_name].append(task_folder)
|
||||
# Score not found but logs exist - skip this task
|
||||
skipped_tasks[model_name].append(task_folder)
|
||||
print(f"Error: No score message found for task '{task_folder}' with model '{model_name}'. Skipping this task.")
|
||||
|
||||
if not logs_found:
|
||||
print(f"No log files found in {task_folder}")
|
||||
|
||||
# Calculate model completion rates (ignore null scores)
|
||||
# Calculate model completion rates (only consider tasks with scores)
|
||||
model_completion_rates = {}
|
||||
for model_name in model_names:
|
||||
valid_tasks = [task for task in all_task_scores.keys() if model_name in all_task_scores[task] and all_task_scores[task][model_name] is not None]
|
||||
valid_tasks = [task for task in all_task_scores.keys() if model_name in all_task_scores[task]]
|
||||
total_tasks = len(valid_tasks)
|
||||
completed_tasks = len([task for task in valid_tasks if all_task_scores[task][model_name] > 0])
|
||||
model_completion_rates[model_name] = (completed_tasks / total_tasks) if total_tasks > 0 else 0
|
||||
|
||||
# Process task scores into groups (ignore null and 0 scores)
|
||||
# Process task scores into groups (ignore 0 scores)
|
||||
for task, model_scores in all_task_scores.items():
|
||||
match = pattern.search(task)
|
||||
if match:
|
||||
|
@ -73,7 +73,7 @@ def extract_success_scores(folders, model_names):
|
|||
room = int(match.group(2))
|
||||
|
||||
for model, score in model_scores.items():
|
||||
if score is not None and score > 0: # Ignore null and 0 scores
|
||||
if score > 0: # Ignore 0 scores
|
||||
material_groups[material][model].append(score)
|
||||
room_groups[room][model].append(score)
|
||||
material_room_groups[(material, room)][model].append(score)
|
||||
|
@ -102,14 +102,14 @@ def extract_success_scores(folders, model_names):
|
|||
for model in model_names:
|
||||
score = all_task_scores[task].get(model)
|
||||
if score is None:
|
||||
row.append("null")
|
||||
row.append("-")
|
||||
else:
|
||||
row.append(round(score, 2))
|
||||
table.add_row(row)
|
||||
print("\nTask-wise Success Scores")
|
||||
print(table)
|
||||
|
||||
def display_zero_and_null_score_tasks():
|
||||
def display_zero_and_skipped_tasks():
|
||||
for model in model_names:
|
||||
if zero_score_tasks[model]:
|
||||
table = PrettyTable([f"{model} - Tasks with 0 Score"])
|
||||
|
@ -118,28 +118,28 @@ def extract_success_scores(folders, model_names):
|
|||
print(f"\n{model} - Tasks with 0 Success Score")
|
||||
print(table)
|
||||
|
||||
if null_score_tasks[model]:
|
||||
table = PrettyTable([f"{model} - Tasks with Null Score"])
|
||||
for task in null_score_tasks[model]:
|
||||
if skipped_tasks[model]:
|
||||
table = PrettyTable([f"{model} - Skipped Tasks (No Score Message)"])
|
||||
for task in skipped_tasks[model]:
|
||||
table.add_row([task])
|
||||
print(f"\n{model} - Tasks with Null Success Score")
|
||||
print(f"\n{model} - Skipped Tasks (No Score Message)")
|
||||
print(table)
|
||||
|
||||
def display_overall_averages():
|
||||
table = PrettyTable(["Metric"] + model_names)
|
||||
|
||||
# Overall average score (including zeros, excluding nulls)
|
||||
# Overall average score (including zeros)
|
||||
row_with_zeros = ["Average Score (All Tasks)"]
|
||||
for model in model_names:
|
||||
valid_scores = [s for s in overall_scores[model] if s is not None]
|
||||
valid_scores = overall_scores[model]
|
||||
avg = sum(valid_scores) / len(valid_scores) if valid_scores else 0
|
||||
row_with_zeros.append(round(avg, 2))
|
||||
table.add_row(row_with_zeros)
|
||||
|
||||
# Overall average score (excluding zeros and nulls)
|
||||
# Overall average score (excluding zeros)
|
||||
row_without_zeros = ["Average Score (Completed Tasks)"]
|
||||
for model in model_names:
|
||||
completed_scores = [s for s in overall_scores[model] if s is not None and s > 0]
|
||||
completed_scores = [s for s in overall_scores[model] if s > 0]
|
||||
avg = sum(completed_scores) / len(completed_scores) if completed_scores else 0
|
||||
row_without_zeros.append(round(avg, 2))
|
||||
table.add_row(row_without_zeros)
|
||||
|
@ -150,24 +150,30 @@ def extract_success_scores(folders, model_names):
|
|||
completion_row.append(round(model_completion_rates[model] * 100, 2))
|
||||
table.add_row(completion_row)
|
||||
|
||||
# Total number of tasks (excluding nulls)
|
||||
# Total number of tasks
|
||||
task_count_row = ["Total Tasks"]
|
||||
for model in model_names:
|
||||
valid_tasks = [task for task in all_task_scores.keys() if model in all_task_scores[task] and all_task_scores[task][model] is not None]
|
||||
valid_tasks = [task for task in all_task_scores.keys() if model in all_task_scores[task]]
|
||||
task_count_row.append(len(valid_tasks))
|
||||
table.add_row(task_count_row)
|
||||
|
||||
# Number of skipped tasks
|
||||
skipped_count_row = ["Skipped Tasks"]
|
||||
for model in model_names:
|
||||
skipped_count_row.append(len(skipped_tasks[model]))
|
||||
table.add_row(skipped_count_row)
|
||||
|
||||
print("\nOverall Performance Metrics")
|
||||
print(table)
|
||||
|
||||
display_overall_averages() # Display overall averages first
|
||||
display_task_scores()
|
||||
display_zero_and_null_score_tasks()
|
||||
display_zero_and_skipped_tasks()
|
||||
display_table("Average Success Score by Material", avg_material_scores)
|
||||
display_table("Average Success Score by Room", avg_room_scores)
|
||||
display_table("Average Success Score by (Material, Room) Tuples", avg_material_room_scores, tuple_keys=True)
|
||||
|
||||
# Example usage
|
||||
folders = ["experiments/gpt-4o_construction_tasks", "experiments/exp_03-23_12-31"]
|
||||
model_names = ["GPT-4o","Claude 3.5 sonnet"]
|
||||
folders = ["experiments/gpt-4o_construction_tasks", "experiments/claude-3-5-sonnet-latest_construction_tasks"]
|
||||
model_names = ["GPT-4o", "Claude 3.5 sonnet"]
|
||||
extract_success_scores(folders, model_names)
|
|
@ -2,6 +2,7 @@ import os
|
|||
import json
|
||||
import re
|
||||
from collections import defaultdict
|
||||
from prettytable import PrettyTable
|
||||
|
||||
def extract_cooking_items(exp_dir):
|
||||
"""Extract cooking items from experiment directory name."""
|
||||
|
@ -36,8 +37,8 @@ def analyze_experiments(root_dir, model_name):
|
|||
# Keep track of all unique cooking items
|
||||
all_cooking_items = set()
|
||||
|
||||
# Track skipped experiments
|
||||
skipped_experiments = []
|
||||
# Keep track of ignored tasks
|
||||
ignored_tasks = []
|
||||
|
||||
# Get a list of all experiment directories
|
||||
experiment_dirs = [d for d in os.listdir(root_dir) if os.path.isdir(os.path.join(root_dir, d))
|
||||
|
@ -78,18 +79,18 @@ def analyze_experiments(root_dir, model_name):
|
|||
with open(agent_file_path, 'r') as f:
|
||||
agent_data = json.load(f)
|
||||
|
||||
# Check for success in the turns data
|
||||
# Check for score information in the turns data
|
||||
if "turns" in agent_data:
|
||||
for turn in agent_data["turns"]:
|
||||
if turn.get("role") == "system" and "content" in turn:
|
||||
if isinstance(turn["content"], str) and "Task ended with score" in turn["content"]:
|
||||
if isinstance(turn["content"], str) and "Task ended with score : " in turn["content"]:
|
||||
score_found = True
|
||||
if "Task ended with score : 1" in turn["content"]:
|
||||
is_successful = True
|
||||
break
|
||||
break
|
||||
|
||||
# If we found score information, no need to check other files
|
||||
if score_found:
|
||||
# If we found success, no need to check other files
|
||||
if is_successful:
|
||||
break
|
||||
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
|
@ -97,10 +98,9 @@ def analyze_experiments(root_dir, model_name):
|
|||
# Continue to check other agent files instead of failing
|
||||
continue
|
||||
|
||||
# Skip experiments with no score information
|
||||
# If no score information was found in any agent file, ignore this task
|
||||
if not score_found:
|
||||
skipped_experiments.append(exp_dir)
|
||||
print(f"Warning: No task score found in experiment {exp_dir} - skipping")
|
||||
ignored_tasks.append(exp_dir)
|
||||
continue
|
||||
|
||||
# Update cooking item results
|
||||
|
@ -114,178 +114,195 @@ def analyze_experiments(root_dir, model_name):
|
|||
if is_successful:
|
||||
blocked_access_results[blocked_key]["success"] += 1
|
||||
|
||||
return blocked_access_results, cooking_item_results, all_cooking_items, skipped_experiments
|
||||
# Print information about ignored tasks
|
||||
if ignored_tasks:
|
||||
print(f"\n{model_name}: Ignored {len(ignored_tasks)} tasks with no score information:")
|
||||
for task in ignored_tasks:
|
||||
print(f" - {task}")
|
||||
|
||||
return blocked_access_results, cooking_item_results, all_cooking_items, ignored_tasks
|
||||
|
||||
def print_model_comparison_blocked(models_results):
|
||||
print("\nModel Comparison by Number of Agents with Blocked Access:")
|
||||
print("=" * 100)
|
||||
|
||||
|
||||
# Get all possible blocked access keys
|
||||
all_blocked_keys = set()
|
||||
for model_results in models_results.values():
|
||||
all_blocked_keys.update(model_results.keys())
|
||||
|
||||
|
||||
# Sort the keys
|
||||
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
|
||||
|
||||
# Create the header
|
||||
header = f"{'Blocked Agents':<15} | "
|
||||
for model_name in models_results.keys():
|
||||
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
# Calculate and print the results for each blocked key
|
||||
|
||||
# Create the table
|
||||
table = PrettyTable()
|
||||
table.field_names = ["Blocked Agents"] + [
|
||||
f"{model_name} (Success Rate | Success/Total)" for model_name in models_results.keys()
|
||||
]
|
||||
|
||||
# Calculate and add rows for each blocked key
|
||||
model_totals = {model: {"success": 0, "total": 0} for model in models_results.keys()}
|
||||
|
||||
|
||||
for key in sorted_keys:
|
||||
row = f"{key:<15} | "
|
||||
|
||||
row = [key]
|
||||
|
||||
for model_name, model_results in models_results.items():
|
||||
if key in model_results:
|
||||
success = model_results[key]["success"]
|
||||
total = model_results[key]["total"]
|
||||
|
||||
|
||||
model_totals[model_name]["success"] += success
|
||||
model_totals[model_name]["total"] += total
|
||||
|
||||
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
row.append(f"{success_rate:.2f}% | {success}/{total}")
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
row.append("N/A")
|
||||
|
||||
table.add_row(row)
|
||||
|
||||
# Print the table
|
||||
print(table)
|
||||
|
||||
# Print the overall results
|
||||
print("-" * 100)
|
||||
row = f"{'Overall':<15} | "
|
||||
|
||||
overall_row = ["Overall"]
|
||||
for model_name, totals in model_totals.items():
|
||||
success = totals["success"]
|
||||
total = totals["total"]
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
|
||||
print(row)
|
||||
overall_row.append(f"{success_rate:.2f}% | {success}/{total}")
|
||||
|
||||
table.add_row(overall_row)
|
||||
print(table)
|
||||
|
||||
def print_model_comparison_items(models_item_results, all_cooking_items):
|
||||
print("\nModel Comparison by Cooking Item:")
|
||||
print("=" * 100)
|
||||
|
||||
# Create the header
|
||||
header = f"{'Cooking Item':<20} | "
|
||||
for model_name in models_item_results.keys():
|
||||
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
# Calculate and print the results for each cooking item
|
||||
|
||||
# Create the table
|
||||
table = PrettyTable()
|
||||
table.field_names = ["Cooking Item"] + [
|
||||
f"{model_name} (Success Rate | Success/Total)" for model_name in models_item_results.keys()
|
||||
]
|
||||
|
||||
# Calculate and add rows for each cooking item
|
||||
model_totals = {model: {"success": 0, "total": 0} for model in models_item_results.keys()}
|
||||
|
||||
|
||||
for item in sorted(all_cooking_items):
|
||||
row = f"{item:<20} | "
|
||||
|
||||
row = [item]
|
||||
|
||||
for model_name, model_results in models_item_results.items():
|
||||
if item in model_results:
|
||||
success = model_results[item]["success"]
|
||||
total = model_results[item]["total"]
|
||||
|
||||
|
||||
model_totals[model_name]["success"] += success
|
||||
model_totals[model_name]["total"] += total
|
||||
|
||||
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
row.append(f"{success_rate:.2f}% | {success}/{total}")
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
row.append("N/A")
|
||||
|
||||
table.add_row(row)
|
||||
|
||||
# Print the table
|
||||
print(table)
|
||||
|
||||
# Print the overall results
|
||||
print("-" * 100)
|
||||
row = f"{'Overall':<20} | "
|
||||
|
||||
overall_row = ["Overall"]
|
||||
for model_name, totals in model_totals.items():
|
||||
success = totals["success"]
|
||||
total = totals["total"]
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
|
||||
print(row)
|
||||
overall_row.append(f"{success_rate:.2f}% | {success}/{total}")
|
||||
|
||||
table.add_row(overall_row)
|
||||
print(table)
|
||||
|
||||
def print_model_comparison_items_by_blocked(models_data, all_cooking_items):
|
||||
print("\nDetailed Model Comparison by Cooking Item and Blocked Agent Count:")
|
||||
print("=" * 120)
|
||||
|
||||
|
||||
# For each cooking item, create a comparison table by blocked agent count
|
||||
for item in sorted(all_cooking_items):
|
||||
print(f"\nResults for cooking item: {item}")
|
||||
print("-" * 100)
|
||||
|
||||
# Create the header
|
||||
header = f"{'Blocked Agents':<15} | "
|
||||
for model_name in models_data.keys():
|
||||
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
|
||||
# Create the table
|
||||
table = PrettyTable()
|
||||
table.field_names = ["Blocked Agents"] + [
|
||||
f"{model_name} Success Rate" for model_name in models_data.keys()
|
||||
] + [
|
||||
f"{model_name} Success/Total" for model_name in models_data.keys()
|
||||
]
|
||||
|
||||
# Get all possible blocked agent counts
|
||||
all_blocked_keys = set()
|
||||
for model_name, model_data in models_data.items():
|
||||
_, _, item_blocked_data = model_data
|
||||
for blocked_key in item_blocked_data.get(item, {}).keys():
|
||||
all_blocked_keys.add(blocked_key)
|
||||
|
||||
|
||||
# Sort the keys
|
||||
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
|
||||
|
||||
# Print each row
|
||||
|
||||
# Add rows for each blocked key
|
||||
for blocked_key in sorted_keys:
|
||||
row = f"{blocked_key:<15} | "
|
||||
|
||||
row = [blocked_key]
|
||||
|
||||
for model_name, model_data in models_data.items():
|
||||
_, _, item_blocked_data = model_data
|
||||
|
||||
|
||||
if item in item_blocked_data and blocked_key in item_blocked_data[item]:
|
||||
success = item_blocked_data[item][blocked_key]["success"]
|
||||
total = item_blocked_data[item][blocked_key]["total"]
|
||||
|
||||
|
||||
if total > 0:
|
||||
success_rate = (success / total * 100)
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
row.append(f"{success_rate:.2f}%")
|
||||
row.append(f"{success}/{total}")
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'0/0':<19} | "
|
||||
row.append("N/A")
|
||||
row.append("0/0")
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
row.append("N/A")
|
||||
row.append("N/A")
|
||||
|
||||
table.add_row(row)
|
||||
|
||||
# Print the table
|
||||
print(table)
|
||||
|
||||
# Print item summary for each model
|
||||
print("-" * 100)
|
||||
row = f"{'Overall':<15} | "
|
||||
|
||||
overall_row = ["Overall"]
|
||||
for model_name, model_data in models_data.items():
|
||||
_, item_results, _ = model_data
|
||||
|
||||
|
||||
if item in item_results:
|
||||
success = item_results[item]["success"]
|
||||
total = item_results[item]["total"]
|
||||
|
||||
|
||||
if total > 0:
|
||||
success_rate = (success / total * 100)
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
overall_row.append(f"{success_rate:.2f}%")
|
||||
overall_row.append(f"{success}/{total}")
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'0/0':<19} | "
|
||||
overall_row.append("N/A")
|
||||
overall_row.append("0/0")
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
overall_row.append("N/A")
|
||||
overall_row.append("N/A")
|
||||
|
||||
table.add_row(overall_row)
|
||||
print(table)
|
||||
|
||||
def generate_item_blocked_data(experiments_root):
|
||||
# Organize data by item and blocked agent count
|
||||
item_blocked_data = defaultdict(lambda: defaultdict(lambda: {"success": 0, "total": 0}))
|
||||
|
||||
# Track skipped experiments
|
||||
skipped_experiments = []
|
||||
# Keep track of ignored tasks
|
||||
ignored_tasks = []
|
||||
|
||||
# Populate the data structure
|
||||
for exp_dir in os.listdir(experiments_root):
|
||||
|
@ -304,7 +321,7 @@ def generate_item_blocked_data(experiments_root):
|
|||
else:
|
||||
blocked_key = "0 agent(s)"
|
||||
|
||||
# Check if the task was successful
|
||||
# Check if the task was successful and if score information exists
|
||||
is_successful = False
|
||||
score_found = False
|
||||
full_exp_path = os.path.join(experiments_root, exp_dir)
|
||||
|
@ -318,103 +335,90 @@ def generate_item_blocked_data(experiments_root):
|
|||
if "turns" in agent_data:
|
||||
for turn in agent_data["turns"]:
|
||||
if turn.get("role") == "system" and "content" in turn:
|
||||
if isinstance(turn["content"], str) and "Task ended with score" in turn["content"]:
|
||||
if isinstance(turn["content"], str) and "Task ended with score : " in turn["content"]:
|
||||
score_found = True
|
||||
if "Task ended with score : 1" in turn["content"]:
|
||||
is_successful = True
|
||||
break
|
||||
break
|
||||
|
||||
if score_found:
|
||||
if is_successful:
|
||||
break
|
||||
except:
|
||||
continue
|
||||
|
||||
# Skip experiments with no score information
|
||||
# If no score information was found, skip this task
|
||||
if not score_found:
|
||||
skipped_experiments.append(exp_dir)
|
||||
ignored_tasks.append(exp_dir)
|
||||
continue
|
||||
|
||||
|
||||
# Update the item-blocked data
|
||||
for item in cooking_items:
|
||||
item_blocked_data[item][blocked_key]["total"] += 1
|
||||
if is_successful:
|
||||
item_blocked_data[item][blocked_key]["success"] += 1
|
||||
|
||||
return item_blocked_data, skipped_experiments
|
||||
return item_blocked_data, ignored_tasks
|
||||
|
||||
def main():
|
||||
base_dir = "experiments"
|
||||
|
||||
# Get the model directories
|
||||
all_model_dirs = [d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))]
|
||||
gpt_dirs = [d for d in all_model_dirs if d.startswith("gpt-4o_30_cooking_tasks")]
|
||||
claude_dirs = [d for d in all_model_dirs if d.startswith("claude-3-5-sonnet-latest_30_cooking_tasks")]
|
||||
|
||||
if not gpt_dirs or not claude_dirs:
|
||||
print("Error: Could not find both model directories. Please check your paths.")
|
||||
# Define lists for model directories and corresponding model names
|
||||
model_dirs = [
|
||||
"experiments/gpt-4o_2agent_NEW_cooking_tasks",
|
||||
# "experiments/claude-3-5-sonnet_2agent_NEW_cooking_tasks",
|
||||
# "experiments/claude-3-5-sonnet_3agent_NEW_cooking_tasks",
|
||||
"experiments/gpt-4o_3agent_NEW_cooking_tasks",
|
||||
# "experiments/1_claude-3-5-sonnet_4agents_NEW_cooking_tasks",
|
||||
"experiments/gpt-4o_4agents_NEW_cooking_tasks",
|
||||
"experiments/gpt-4o_5agents_NEW_cooking_tasks",
|
||||
# "experiments/"
|
||||
]
|
||||
model_names = [
|
||||
"GPT-4o-2agent",
|
||||
# "Claude-3.5-2agent",
|
||||
"GPT-4o-3agent",
|
||||
# "Claude-3.5-3agent",
|
||||
# "Claude-3.5-4agent",
|
||||
"GPT-4o-4agent",
|
||||
"GPT-4o-5agent",
|
||||
# "Another-Model"
|
||||
]
|
||||
|
||||
# Ensure both lists are of the same size
|
||||
if len(model_dirs) != len(model_names):
|
||||
print("Error: The number of model directories and model names must be the same.")
|
||||
return
|
||||
|
||||
# Use the first directory found for each model
|
||||
gpt_dir = os.path.join(base_dir, gpt_dirs[0])
|
||||
claude_dir = os.path.join(base_dir, claude_dirs[0])
|
||||
|
||||
print(f"Analyzing GPT-4o experiments in: {gpt_dir}")
|
||||
print(f"Analyzing Claude-3.5-Sonnet experiments in: {claude_dir}")
|
||||
|
||||
|
||||
# Analyze each model directory
|
||||
gpt_blocked_results, gpt_item_results, gpt_unique_items, gpt_skipped = analyze_experiments(gpt_dir, "GPT-4o")
|
||||
claude_blocked_results, claude_item_results, claude_unique_items, claude_skipped = analyze_experiments(claude_dir, "Claude-3.5")
|
||||
|
||||
# Combine unique cooking items
|
||||
all_cooking_items = gpt_unique_items.union(claude_unique_items)
|
||||
|
||||
# Generate item-blocked data for each model
|
||||
gpt_item_blocked_data, gpt_skipped_detailed = generate_item_blocked_data(gpt_dir)
|
||||
claude_item_blocked_data, claude_skipped_detailed = generate_item_blocked_data(claude_dir)
|
||||
|
||||
# Create model comparison data structures
|
||||
models_blocked_results = {
|
||||
"GPT-4o": gpt_blocked_results,
|
||||
"Claude-3.5": claude_blocked_results
|
||||
}
|
||||
|
||||
models_item_results = {
|
||||
"GPT-4o": gpt_item_results,
|
||||
"Claude-3.5": claude_item_results
|
||||
}
|
||||
|
||||
models_data = {
|
||||
"GPT-4o": (gpt_blocked_results, gpt_item_results, gpt_item_blocked_data),
|
||||
"Claude-3.5": (claude_blocked_results, claude_item_results, claude_item_blocked_data)
|
||||
}
|
||||
|
||||
models_blocked_results = {}
|
||||
models_item_results = {}
|
||||
all_cooking_items = set()
|
||||
total_ignored_tasks = 0
|
||||
|
||||
for model_dir, model_name in zip(model_dirs, model_names):
|
||||
print(f"Analyzing {model_name} experiments in: {model_dir}")
|
||||
|
||||
blocked_results, item_results, unique_items, ignored_tasks = analyze_experiments(model_dir, model_name)
|
||||
|
||||
models_blocked_results[model_name] = blocked_results
|
||||
models_item_results[model_name] = item_results
|
||||
all_cooking_items.update(unique_items)
|
||||
total_ignored_tasks += len(ignored_tasks)
|
||||
|
||||
if ignored_tasks:
|
||||
print(f" - {model_name}: Ignored {len(ignored_tasks)} tasks with no score information.")
|
||||
|
||||
# Print summary of ignored tasks
|
||||
if total_ignored_tasks > 0:
|
||||
print(f"\nTotal ignored tasks (missing score information): {total_ignored_tasks}")
|
||||
|
||||
# Print the comparison tables
|
||||
print_model_comparison_blocked(models_blocked_results)
|
||||
print_model_comparison_items(models_item_results, all_cooking_items)
|
||||
print_model_comparison_items_by_blocked(models_data, all_cooking_items)
|
||||
|
||||
|
||||
# Print overall statistics
|
||||
print("\nUnique Cooking Items Found:")
|
||||
print("=" * 60)
|
||||
print(", ".join(sorted(all_cooking_items)))
|
||||
print(f"Total unique items: {len(all_cooking_items)}")
|
||||
|
||||
# Print skipped experiment information
|
||||
print("\nSkipped Experiments (No Score Information):")
|
||||
print("=" * 60)
|
||||
print(f"GPT-4o: {len(gpt_skipped)} experiments skipped")
|
||||
print(f"Claude-3.5: {len(claude_skipped)} experiments skipped")
|
||||
|
||||
if gpt_skipped or claude_skipped:
|
||||
print("\nSkipped experiment directories:")
|
||||
if gpt_skipped:
|
||||
print("GPT-4o:")
|
||||
for exp in gpt_skipped:
|
||||
print(f" - {exp}")
|
||||
if claude_skipped:
|
||||
print("Claude-3.5:")
|
||||
for exp in claude_skipped:
|
||||
print(f" - {exp}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Reference in a new issue