Updated analyze scripts to perform model comparison

This commit is contained in:
Ayush Maniar 2025-03-23 14:23:10 -07:00
parent 4c5320eddb
commit 76de807a46
2 changed files with 415 additions and 173 deletions

View file

@ -4,86 +4,170 @@ from collections import defaultdict
from prettytable import PrettyTable
import re
def extract_success_scores(root_dir):
task_scores = {} # Stores task-wise scores
material_groups = defaultdict(list)
room_groups = defaultdict(list)
def extract_success_scores(folders, model_names):
assert len(folders) == len(model_names), "Folders and model names lists must have the same length."
all_task_scores = defaultdict(dict) # Stores task-wise scores per model
zero_score_tasks = defaultdict(list) # Stores tasks with 0 score per model
null_score_tasks = defaultdict(list) # Stores tasks with null score per model
material_groups = defaultdict(lambda: defaultdict(list))
room_groups = defaultdict(lambda: defaultdict(list))
material_room_groups = defaultdict(lambda: defaultdict(list))
overall_scores = defaultdict(list) # New dict to store all scores for each model
# Regex pattern to extract material and room numbers
pattern = re.compile(r"materials_(\d+)_rooms_(\d+)")
# Iterate through each task folder
for task_folder in os.listdir(root_dir):
task_path = os.path.join(root_dir, task_folder)
if os.path.isdir(task_path):
logs_found = False # Flag to track if logs exist
# Check for JSON files
for file_name in os.listdir(task_path):
if file_name.endswith(".json"):
logs_found = True # JSON file exists
file_path = os.path.join(task_path, file_name)
# Read JSON file
try:
with open(file_path, 'r') as file:
data = json.load(file)
# Extract success score from the last system message
for turn in reversed(data.get("turns", [])):
if turn["role"] == "system" and "Task ended with score" in turn["content"]:
score = float(turn["content"].split(":")[-1].strip())
task_scores[task_folder] = score # Store per-task score
break # Stop searching if found
# Stop checking other files in the folder if score is found
if task_folder in task_scores:
for root_dir, model_name in zip(folders, model_names):
for task_folder in os.listdir(root_dir):
task_path = os.path.join(root_dir, task_folder)
if os.path.isdir(task_path):
logs_found = False
score_found = False
for file_name in os.listdir(task_path):
if file_name.endswith(".json"):
logs_found = True
file_path = os.path.join(task_path, file_name)
try:
with open(file_path, 'r') as file:
data = json.load(file)
for turn in reversed(data.get("turns", [])):
if turn["role"] == "system" and "Task ended with score" in turn["content"]:
score = float(turn["content"].split(":")[-1].strip())
all_task_scores[task_folder][model_name] = score
overall_scores[model_name].append(score) # Add to overall scores
score_found = True
if score == 0:
zero_score_tasks[model_name].append(task_folder)
break
if score_found:
break
except Exception as e:
print(f"Error reading {file_path}: {e}")
# If no logs were found, print a message
if not logs_found:
print(f"No log files found in {task_folder}")
# Group scores by material and room
for task, score in task_scores.items():
except Exception as e:
print(f"Error reading {file_path}: {e}")
if logs_found and not score_found:
# Score not found but logs exist - mark as null
all_task_scores[task_folder][model_name] = None
null_score_tasks[model_name].append(task_folder)
if not logs_found:
print(f"No log files found in {task_folder}")
# Calculate model completion rates (ignore null scores)
model_completion_rates = {}
for model_name in model_names:
valid_tasks = [task for task in all_task_scores.keys() if model_name in all_task_scores[task] and all_task_scores[task][model_name] is not None]
total_tasks = len(valid_tasks)
completed_tasks = len([task for task in valid_tasks if all_task_scores[task][model_name] > 0])
model_completion_rates[model_name] = (completed_tasks / total_tasks) if total_tasks > 0 else 0
# Process task scores into groups (ignore null and 0 scores)
for task, model_scores in all_task_scores.items():
match = pattern.search(task)
if match:
material = int(match.group(1)) # Extract material number
room = int(match.group(2)) # Extract room number
material_groups[material].append(score)
room_groups[room].append(score)
else:
print(f"Warning: Task folder '{task}' does not match expected format.")
# Calculate average scores
material = int(match.group(1))
room = int(match.group(2))
for model, score in model_scores.items():
if score is not None and score > 0: # Ignore null and 0 scores
material_groups[material][model].append(score)
room_groups[room][model].append(score)
material_room_groups[(material, room)][model].append(score)
def calculate_average(group):
return {key: sum(values) / len(values) for key, values in group.items()}
return {key: {model: sum(scores) / len(scores) for model, scores in models.items() if scores}
for key, models in group.items() if models}
avg_material_scores = calculate_average(material_groups)
avg_room_scores = calculate_average(room_groups)
# Display results using PrettyTable
def display_table(title, data):
table = PrettyTable(["Category", "Average Score"])
for key, value in sorted(data.items()):
table.add_row([key, round(value, 2)])
avg_material_room_scores = calculate_average(material_room_groups)
def display_table(title, data, tuple_keys=False):
table = PrettyTable(["Category"] + model_names)
for key, model_scores in sorted(data.items()):
key_display = key if not tuple_keys else f"({key[0]}, {key[1]})"
row = [key_display] + [round(model_scores.get(model, 0), 2) for model in model_names]
table.add_row(row)
print(f"\n{title}")
print(table)
def display_task_scores():
table = PrettyTable(["Task", "Success Score"])
for task, score in sorted(task_scores.items()):
table.add_row([task, round(score, 2)])
table = PrettyTable(["Task"] + model_names)
for task in sorted(all_task_scores.keys()):
row = [task]
for model in model_names:
score = all_task_scores[task].get(model)
if score is None:
row.append("null")
else:
row.append(round(score, 2))
table.add_row(row)
print("\nTask-wise Success Scores")
print(table)
# Print all tables
def display_zero_and_null_score_tasks():
for model in model_names:
if zero_score_tasks[model]:
table = PrettyTable([f"{model} - Tasks with 0 Score"])
for task in zero_score_tasks[model]:
table.add_row([task])
print(f"\n{model} - Tasks with 0 Success Score")
print(table)
if null_score_tasks[model]:
table = PrettyTable([f"{model} - Tasks with Null Score"])
for task in null_score_tasks[model]:
table.add_row([task])
print(f"\n{model} - Tasks with Null Success Score")
print(table)
def display_overall_averages():
table = PrettyTable(["Metric"] + model_names)
# Overall average score (including zeros, excluding nulls)
row_with_zeros = ["Average Score (All Tasks)"]
for model in model_names:
valid_scores = [s for s in overall_scores[model] if s is not None]
avg = sum(valid_scores) / len(valid_scores) if valid_scores else 0
row_with_zeros.append(round(avg, 2))
table.add_row(row_with_zeros)
# Overall average score (excluding zeros and nulls)
row_without_zeros = ["Average Score (Completed Tasks)"]
for model in model_names:
completed_scores = [s for s in overall_scores[model] if s is not None and s > 0]
avg = sum(completed_scores) / len(completed_scores) if completed_scores else 0
row_without_zeros.append(round(avg, 2))
table.add_row(row_without_zeros)
# Task completion rate
completion_row = ["Task Completion Rate (%)"]
for model in model_names:
completion_row.append(round(model_completion_rates[model] * 100, 2))
table.add_row(completion_row)
# Total number of tasks (excluding nulls)
task_count_row = ["Total Tasks"]
for model in model_names:
valid_tasks = [task for task in all_task_scores.keys() if model in all_task_scores[task] and all_task_scores[task][model] is not None]
task_count_row.append(len(valid_tasks))
table.add_row(task_count_row)
print("\nOverall Performance Metrics")
print(table)
display_overall_averages() # Display overall averages first
display_task_scores()
display_table("Average Success Score by Material (Grouped by Number)", avg_material_scores)
display_table("Average Success Score by Room (Grouped by Number)", avg_room_scores)
display_zero_and_null_score_tasks()
display_table("Average Success Score by Material", avg_material_scores)
display_table("Average Success Score by Room", avg_room_scores)
display_table("Average Success Score by (Material, Room) Tuples", avg_material_room_scores, tuple_keys=True)
# Example usage (replace 'root_directory' with actual path)
root_directory = "experiments/exp_03-22_19-29"
extract_success_scores(root_directory)
# Example usage
folders = ["experiments/gpt-4o_construction_tasks", "experiments/exp_03-23_12-31"]
model_names = ["GPT-4o","Claude 3.5 sonnet"]
extract_success_scores(folders, model_names)

View file

@ -20,15 +20,11 @@ def extract_cooking_items(exp_dir):
return items
def analyze_experiments(root_dir):
def analyze_experiments(root_dir, model_name):
# Store results by number of blocked agents
blocked_access_results = defaultdict(lambda: {
"success": 0,
"total": 0,
"cake_success": 0,
"cake_total": 0,
"non_cake_success": 0,
"non_cake_total": 0
"total": 0
})
# Store results by cooking item
@ -51,9 +47,6 @@ def analyze_experiments(root_dir):
# Add to unique items set
all_cooking_items.update(cooking_items)
# Check if experiment involves cake
has_cake = any(item == "cake" for item in cooking_items)
# Extract blocked access information from directory name
blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir)
@ -104,119 +97,284 @@ def analyze_experiments(root_dir):
if is_successful:
cooking_item_results[item]["success"] += 1
# Update the appropriate blocked access counters
# First update the category-specific counters
if has_cake:
blocked_access_results[blocked_key]["cake_total"] += 1
if is_successful:
blocked_access_results[blocked_key]["cake_success"] += 1
else:
blocked_access_results[blocked_key]["non_cake_total"] += 1
if is_successful:
blocked_access_results[blocked_key]["non_cake_success"] += 1
# Only count non-cake experiments in the main totals
blocked_access_results[blocked_key]["total"] += 1
if is_successful:
blocked_access_results[blocked_key]["success"] += 1
# Update the blocked access counters
blocked_access_results[blocked_key]["total"] += 1
if is_successful:
blocked_access_results[blocked_key]["success"] += 1
return blocked_access_results, cooking_item_results, all_cooking_items
def print_blocked_results(results):
print("\nExperiment Results by Number of Agents with Blocked Access (Excluding Cake Experiments):")
print("=" * 80)
print(f"{'Blocked Agents':<15} | {'Success Rate':<15} | {'Success/Total':<15} | {'Cake Tasks':<15} | {'Non-Cake Tasks':<15}")
print("-" * 80)
def print_model_comparison_blocked(models_results):
print("\nModel Comparison by Number of Agents with Blocked Access:")
print("=" * 100)
# Calculate totals
total_success = 0
total_experiments = 0
total_cake = 0
total_non_cake = 0
# Get all possible blocked access keys
all_blocked_keys = set()
for model_results in models_results.values():
all_blocked_keys.update(model_results.keys())
# Sort by number of blocked agents
for key in sorted(results.keys(), key=lambda x: int(x.split()[0])):
success = results[key]["success"]
total = results[key]["total"]
cake_total = results[key]["cake_total"]
non_cake_total = results[key]["non_cake_total"]
# Sort the keys
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
# Create the header
header = f"{'Blocked Agents':<15} | "
for model_name in models_results.keys():
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
print(header)
print("-" * 100)
# Calculate and print the results for each blocked key
model_totals = {model: {"success": 0, "total": 0} for model in models_results.keys()}
for key in sorted_keys:
row = f"{key:<15} | "
# Verify that non_cake_total matches total
if non_cake_total != total:
print(f"Warning: Non-cake total ({non_cake_total}) doesn't match the total ({total}) for {key}")
total_success += success
total_experiments += total
total_cake += cake_total
total_non_cake += non_cake_total
for model_name, model_results in models_results.items():
if key in model_results:
success = model_results[key]["success"]
total = model_results[key]["total"]
model_totals[model_name]["success"] += success
model_totals[model_name]["total"] += total
success_rate = (success / total * 100) if total > 0 else 0
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
else:
row += f"{'N/A':<19} | {'N/A':<19} | "
print(row)
# Print the overall results
print("-" * 100)
row = f"{'Overall':<15} | "
for model_name, totals in model_totals.items():
success = totals["success"]
total = totals["total"]
success_rate = (success / total * 100) if total > 0 else 0
print(f"{key:<15} | {success_rate:>6.2f}% | {success}/{total:<13} | {cake_total:<15} | {non_cake_total:<15}")
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
# Calculate overall success rate (excluding cake experiments)
overall_success_rate = (total_success / total_experiments * 100) if total_experiments > 0 else 0
print("-" * 80)
print(f"{'Overall':<15} | {overall_success_rate:>6.2f}% | {total_success}/{total_experiments:<13} | {total_cake:<15} | {total_non_cake:<15}")
# Print cake experiment details
print("\nCake Experiment Details:")
print("=" * 60)
print(f"{'Blocked Agents':<15} | {'Success Rate':<15} | {'Success/Total':<15}")
print("-" * 60)
cake_total_success = 0
cake_total_experiments = 0
for key in sorted(results.keys(), key=lambda x: int(x.split()[0])):
cake_success = results[key]["cake_success"]
cake_total = results[key]["cake_total"]
cake_total_success += cake_success
cake_total_experiments += cake_total
cake_success_rate = (cake_success / cake_total * 100) if cake_total > 0 else 0
print(f"{key:<15} | {cake_success_rate:>6.2f}% | {cake_success}/{cake_total}")
cake_overall_success_rate = (cake_total_success / cake_total_experiments * 100) if cake_total_experiments > 0 else 0
print("-" * 60)
print(f"{'Overall':<15} | {cake_overall_success_rate:>6.2f}% | {cake_total_success}/{cake_total_experiments}")
print(row)
def print_cooking_items(cooking_items):
print("\nUnique Cooking Items Found:")
print("=" * 60)
print(", ".join(sorted(cooking_items)))
print(f"Total unique items: {len(cooking_items)}")
def print_item_results(item_results):
print("\nExperiment Results by Cooking Item:")
print("=" * 60)
print(f"{'Cooking Item':<20} | {'Success Rate':<15} | {'Success/Total':<15}")
print("-" * 60)
def print_model_comparison_items(models_item_results, all_cooking_items):
print("\nModel Comparison by Cooking Item:")
print("=" * 100)
# Sort by item name
for item in sorted(item_results.keys()):
success = item_results[item]["success"]
total = item_results[item]["total"]
# Create the header
header = f"{'Cooking Item':<20} | "
for model_name in models_item_results.keys():
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
print(header)
print("-" * 100)
# Calculate and print the results for each cooking item
model_totals = {model: {"success": 0, "total": 0} for model in models_item_results.keys()}
for item in sorted(all_cooking_items):
row = f"{item:<20} | "
for model_name, model_results in models_item_results.items():
if item in model_results:
success = model_results[item]["success"]
total = model_results[item]["total"]
model_totals[model_name]["success"] += success
model_totals[model_name]["total"] += total
success_rate = (success / total * 100) if total > 0 else 0
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
else:
row += f"{'N/A':<19} | {'N/A':<19} | "
print(row)
# Print the overall results
print("-" * 100)
row = f"{'Overall':<20} | "
for model_name, totals in model_totals.items():
success = totals["success"]
total = totals["total"]
success_rate = (success / total * 100) if total > 0 else 0
print(f"{item:<20} | {success_rate:>6.2f}% | {success}/{total}")
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
print("-" * 60)
print(row)
def print_model_comparison_items_by_blocked(models_data, all_cooking_items):
print("\nDetailed Model Comparison by Cooking Item and Blocked Agent Count:")
print("=" * 120)
# For each cooking item, create a comparison table by blocked agent count
for item in sorted(all_cooking_items):
print(f"\nResults for cooking item: {item}")
print("-" * 100)
# Create the header
header = f"{'Blocked Agents':<15} | "
for model_name in models_data.keys():
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
print(header)
print("-" * 100)
# Get all possible blocked agent counts
all_blocked_keys = set()
for model_name, model_data in models_data.items():
_, _, item_blocked_data = model_data
for blocked_key in item_blocked_data.get(item, {}).keys():
all_blocked_keys.add(blocked_key)
# Sort the keys
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
# Print each row
for blocked_key in sorted_keys:
row = f"{blocked_key:<15} | "
for model_name, model_data in models_data.items():
_, _, item_blocked_data = model_data
if item in item_blocked_data and blocked_key in item_blocked_data[item]:
success = item_blocked_data[item][blocked_key]["success"]
total = item_blocked_data[item][blocked_key]["total"]
if total > 0:
success_rate = (success / total * 100)
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
else:
row += f"{'N/A':<19} | {'0/0':<19} | "
else:
row += f"{'N/A':<19} | {'N/A':<19} | "
print(row)
# Print item summary for each model
print("-" * 100)
row = f"{'Overall':<15} | "
for model_name, model_data in models_data.items():
_, item_results, _ = model_data
if item in item_results:
success = item_results[item]["success"]
total = item_results[item]["total"]
if total > 0:
success_rate = (success / total * 100)
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
else:
row += f"{'N/A':<19} | {'0/0':<19} | "
else:
row += f"{'N/A':<19} | {'N/A':<19} | "
print(row)
def generate_item_blocked_data(experiments_root):
# Organize data by item and blocked agent count
item_blocked_data = defaultdict(lambda: defaultdict(lambda: {"success": 0, "total": 0}))
# Populate the data structure
for exp_dir in os.listdir(experiments_root):
if not os.path.isdir(os.path.join(experiments_root, exp_dir)) or not exp_dir.startswith("multiagent_cooking_"):
continue
# Extract cooking items
cooking_items = extract_cooking_items(exp_dir)
# Extract blocked access information
blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir)
if blocked_access_match:
blocked_access_str = blocked_access_match.group(1)
num_blocked_agents = len(blocked_access_str.split('_'))
blocked_key = f"{num_blocked_agents} agent(s)"
else:
blocked_key = "0 agent(s)"
# Check if the task was successful
is_successful = False
full_exp_path = os.path.join(experiments_root, exp_dir)
agent_files = [f for f in os.listdir(full_exp_path) if f.endswith(".json")]
for agent_file in agent_files:
try:
with open(os.path.join(full_exp_path, agent_file), 'r') as f:
agent_data = json.load(f)
if "turns" in agent_data:
for turn in agent_data["turns"]:
if turn.get("role") == "system" and "content" in turn:
if isinstance(turn["content"], str) and "Task ended with score : 1" in turn["content"]:
is_successful = True
break
if is_successful:
break
except:
continue
# Update the item-blocked data
for item in cooking_items:
item_blocked_data[item][blocked_key]["total"] += 1
if is_successful:
item_blocked_data[item][blocked_key]["success"] += 1
return item_blocked_data
def main():
# Update this path to your experiments directory
experiments_root = "../results/llama_70b_hells_kitchen_cooking_tasks"
base_dir = "experiments"
print(f"Analyzing experiments in: {os.path.abspath(experiments_root)}")
blocked_results, item_results, unique_items = analyze_experiments(experiments_root)
# Get the model directories
all_model_dirs = [d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))]
gpt_dirs = [d for d in all_model_dirs if d.startswith("gpt-4o_30_cooking_tasks")]
claude_dirs = [d for d in all_model_dirs if d.startswith("llama_70b_30_cooking_tasks")]
print_blocked_results(blocked_results)
print_cooking_items(unique_items)
print_item_results(item_results)
if not gpt_dirs or not claude_dirs:
print("Error: Could not find both model directories. Please check your paths.")
return
# Use the first directory found for each model
gpt_dir = os.path.join(base_dir, gpt_dirs[0])
claude_dir = os.path.join(base_dir, claude_dirs[0])
print(f"Analyzing GPT-4o experiments in: {gpt_dir}")
print(f"Analyzing Claude-3.5-Sonnet experiments in: {claude_dir}")
# Analyze each model directory
gpt_blocked_results, gpt_item_results, gpt_unique_items = analyze_experiments(gpt_dir, "GPT-4o")
claude_blocked_results, claude_item_results, claude_unique_items = analyze_experiments(claude_dir, "Claude-3.5")
# Combine unique cooking items
all_cooking_items = gpt_unique_items.union(claude_unique_items)
# Generate item-blocked data for each model
gpt_item_blocked_data = generate_item_blocked_data(gpt_dir)
claude_item_blocked_data = generate_item_blocked_data(claude_dir)
# Create model comparison data structures
models_blocked_results = {
"GPT-4o": gpt_blocked_results,
"Claude-3.5": claude_blocked_results
}
models_item_results = {
"GPT-4o": gpt_item_results,
"Claude-3.5": claude_item_results
}
models_data = {
"GPT-4o": (gpt_blocked_results, gpt_item_results, gpt_item_blocked_data),
"Claude-3.5": (claude_blocked_results, claude_item_results, claude_item_blocked_data)
}
# Print the comparison tables
print_model_comparison_blocked(models_blocked_results)
print_model_comparison_items(models_item_results, all_cooking_items)
print_model_comparison_items_by_blocked(models_data, all_cooking_items)
# Print overall statistics
print("\nUnique Cooking Items Found:")
print("=" * 60)
print(", ".join(sorted(all_cooking_items)))
print(f"Total unique items: {len(all_cooking_items)}")
if __name__ == "__main__":
main()