mirror of
https://github.com/kolbytn/mindcraft.git
synced 2025-06-09 10:45:56 +02:00
Updated analyze scripts to perform model comparison
This commit is contained in:
parent
4c5320eddb
commit
76de807a46
2 changed files with 415 additions and 173 deletions
|
@ -4,86 +4,170 @@ from collections import defaultdict
|
|||
from prettytable import PrettyTable
|
||||
import re
|
||||
|
||||
def extract_success_scores(root_dir):
|
||||
task_scores = {} # Stores task-wise scores
|
||||
material_groups = defaultdict(list)
|
||||
room_groups = defaultdict(list)
|
||||
def extract_success_scores(folders, model_names):
|
||||
assert len(folders) == len(model_names), "Folders and model names lists must have the same length."
|
||||
|
||||
all_task_scores = defaultdict(dict) # Stores task-wise scores per model
|
||||
zero_score_tasks = defaultdict(list) # Stores tasks with 0 score per model
|
||||
null_score_tasks = defaultdict(list) # Stores tasks with null score per model
|
||||
material_groups = defaultdict(lambda: defaultdict(list))
|
||||
room_groups = defaultdict(lambda: defaultdict(list))
|
||||
material_room_groups = defaultdict(lambda: defaultdict(list))
|
||||
overall_scores = defaultdict(list) # New dict to store all scores for each model
|
||||
|
||||
# Regex pattern to extract material and room numbers
|
||||
pattern = re.compile(r"materials_(\d+)_rooms_(\d+)")
|
||||
|
||||
# Iterate through each task folder
|
||||
for task_folder in os.listdir(root_dir):
|
||||
task_path = os.path.join(root_dir, task_folder)
|
||||
if os.path.isdir(task_path):
|
||||
logs_found = False # Flag to track if logs exist
|
||||
|
||||
# Check for JSON files
|
||||
for file_name in os.listdir(task_path):
|
||||
if file_name.endswith(".json"):
|
||||
logs_found = True # JSON file exists
|
||||
file_path = os.path.join(task_path, file_name)
|
||||
|
||||
# Read JSON file
|
||||
try:
|
||||
with open(file_path, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
||||
# Extract success score from the last system message
|
||||
for turn in reversed(data.get("turns", [])):
|
||||
if turn["role"] == "system" and "Task ended with score" in turn["content"]:
|
||||
score = float(turn["content"].split(":")[-1].strip())
|
||||
task_scores[task_folder] = score # Store per-task score
|
||||
break # Stop searching if found
|
||||
|
||||
# Stop checking other files in the folder if score is found
|
||||
if task_folder in task_scores:
|
||||
|
||||
for root_dir, model_name in zip(folders, model_names):
|
||||
for task_folder in os.listdir(root_dir):
|
||||
task_path = os.path.join(root_dir, task_folder)
|
||||
if os.path.isdir(task_path):
|
||||
logs_found = False
|
||||
score_found = False
|
||||
|
||||
for file_name in os.listdir(task_path):
|
||||
if file_name.endswith(".json"):
|
||||
logs_found = True
|
||||
file_path = os.path.join(task_path, file_name)
|
||||
|
||||
try:
|
||||
with open(file_path, 'r') as file:
|
||||
data = json.load(file)
|
||||
|
||||
for turn in reversed(data.get("turns", [])):
|
||||
if turn["role"] == "system" and "Task ended with score" in turn["content"]:
|
||||
score = float(turn["content"].split(":")[-1].strip())
|
||||
all_task_scores[task_folder][model_name] = score
|
||||
overall_scores[model_name].append(score) # Add to overall scores
|
||||
score_found = True
|
||||
|
||||
if score == 0:
|
||||
zero_score_tasks[model_name].append(task_folder)
|
||||
break
|
||||
|
||||
if score_found:
|
||||
break
|
||||
except Exception as e:
|
||||
print(f"Error reading {file_path}: {e}")
|
||||
|
||||
# If no logs were found, print a message
|
||||
if not logs_found:
|
||||
print(f"No log files found in {task_folder}")
|
||||
|
||||
# Group scores by material and room
|
||||
for task, score in task_scores.items():
|
||||
except Exception as e:
|
||||
print(f"Error reading {file_path}: {e}")
|
||||
|
||||
if logs_found and not score_found:
|
||||
# Score not found but logs exist - mark as null
|
||||
all_task_scores[task_folder][model_name] = None
|
||||
null_score_tasks[model_name].append(task_folder)
|
||||
|
||||
if not logs_found:
|
||||
print(f"No log files found in {task_folder}")
|
||||
|
||||
# Calculate model completion rates (ignore null scores)
|
||||
model_completion_rates = {}
|
||||
for model_name in model_names:
|
||||
valid_tasks = [task for task in all_task_scores.keys() if model_name in all_task_scores[task] and all_task_scores[task][model_name] is not None]
|
||||
total_tasks = len(valid_tasks)
|
||||
completed_tasks = len([task for task in valid_tasks if all_task_scores[task][model_name] > 0])
|
||||
model_completion_rates[model_name] = (completed_tasks / total_tasks) if total_tasks > 0 else 0
|
||||
|
||||
# Process task scores into groups (ignore null and 0 scores)
|
||||
for task, model_scores in all_task_scores.items():
|
||||
match = pattern.search(task)
|
||||
if match:
|
||||
material = int(match.group(1)) # Extract material number
|
||||
room = int(match.group(2)) # Extract room number
|
||||
material_groups[material].append(score)
|
||||
room_groups[room].append(score)
|
||||
else:
|
||||
print(f"Warning: Task folder '{task}' does not match expected format.")
|
||||
|
||||
# Calculate average scores
|
||||
material = int(match.group(1))
|
||||
room = int(match.group(2))
|
||||
|
||||
for model, score in model_scores.items():
|
||||
if score is not None and score > 0: # Ignore null and 0 scores
|
||||
material_groups[material][model].append(score)
|
||||
room_groups[room][model].append(score)
|
||||
material_room_groups[(material, room)][model].append(score)
|
||||
|
||||
def calculate_average(group):
|
||||
return {key: sum(values) / len(values) for key, values in group.items()}
|
||||
|
||||
return {key: {model: sum(scores) / len(scores) for model, scores in models.items() if scores}
|
||||
for key, models in group.items() if models}
|
||||
|
||||
avg_material_scores = calculate_average(material_groups)
|
||||
avg_room_scores = calculate_average(room_groups)
|
||||
|
||||
# Display results using PrettyTable
|
||||
def display_table(title, data):
|
||||
table = PrettyTable(["Category", "Average Score"])
|
||||
for key, value in sorted(data.items()):
|
||||
table.add_row([key, round(value, 2)])
|
||||
avg_material_room_scores = calculate_average(material_room_groups)
|
||||
|
||||
def display_table(title, data, tuple_keys=False):
|
||||
table = PrettyTable(["Category"] + model_names)
|
||||
for key, model_scores in sorted(data.items()):
|
||||
key_display = key if not tuple_keys else f"({key[0]}, {key[1]})"
|
||||
row = [key_display] + [round(model_scores.get(model, 0), 2) for model in model_names]
|
||||
table.add_row(row)
|
||||
print(f"\n{title}")
|
||||
print(table)
|
||||
|
||||
|
||||
def display_task_scores():
|
||||
table = PrettyTable(["Task", "Success Score"])
|
||||
for task, score in sorted(task_scores.items()):
|
||||
table.add_row([task, round(score, 2)])
|
||||
table = PrettyTable(["Task"] + model_names)
|
||||
for task in sorted(all_task_scores.keys()):
|
||||
row = [task]
|
||||
for model in model_names:
|
||||
score = all_task_scores[task].get(model)
|
||||
if score is None:
|
||||
row.append("null")
|
||||
else:
|
||||
row.append(round(score, 2))
|
||||
table.add_row(row)
|
||||
print("\nTask-wise Success Scores")
|
||||
print(table)
|
||||
|
||||
# Print all tables
|
||||
|
||||
def display_zero_and_null_score_tasks():
|
||||
for model in model_names:
|
||||
if zero_score_tasks[model]:
|
||||
table = PrettyTable([f"{model} - Tasks with 0 Score"])
|
||||
for task in zero_score_tasks[model]:
|
||||
table.add_row([task])
|
||||
print(f"\n{model} - Tasks with 0 Success Score")
|
||||
print(table)
|
||||
|
||||
if null_score_tasks[model]:
|
||||
table = PrettyTable([f"{model} - Tasks with Null Score"])
|
||||
for task in null_score_tasks[model]:
|
||||
table.add_row([task])
|
||||
print(f"\n{model} - Tasks with Null Success Score")
|
||||
print(table)
|
||||
|
||||
def display_overall_averages():
|
||||
table = PrettyTable(["Metric"] + model_names)
|
||||
|
||||
# Overall average score (including zeros, excluding nulls)
|
||||
row_with_zeros = ["Average Score (All Tasks)"]
|
||||
for model in model_names:
|
||||
valid_scores = [s for s in overall_scores[model] if s is not None]
|
||||
avg = sum(valid_scores) / len(valid_scores) if valid_scores else 0
|
||||
row_with_zeros.append(round(avg, 2))
|
||||
table.add_row(row_with_zeros)
|
||||
|
||||
# Overall average score (excluding zeros and nulls)
|
||||
row_without_zeros = ["Average Score (Completed Tasks)"]
|
||||
for model in model_names:
|
||||
completed_scores = [s for s in overall_scores[model] if s is not None and s > 0]
|
||||
avg = sum(completed_scores) / len(completed_scores) if completed_scores else 0
|
||||
row_without_zeros.append(round(avg, 2))
|
||||
table.add_row(row_without_zeros)
|
||||
|
||||
# Task completion rate
|
||||
completion_row = ["Task Completion Rate (%)"]
|
||||
for model in model_names:
|
||||
completion_row.append(round(model_completion_rates[model] * 100, 2))
|
||||
table.add_row(completion_row)
|
||||
|
||||
# Total number of tasks (excluding nulls)
|
||||
task_count_row = ["Total Tasks"]
|
||||
for model in model_names:
|
||||
valid_tasks = [task for task in all_task_scores.keys() if model in all_task_scores[task] and all_task_scores[task][model] is not None]
|
||||
task_count_row.append(len(valid_tasks))
|
||||
table.add_row(task_count_row)
|
||||
|
||||
print("\nOverall Performance Metrics")
|
||||
print(table)
|
||||
|
||||
display_overall_averages() # Display overall averages first
|
||||
display_task_scores()
|
||||
display_table("Average Success Score by Material (Grouped by Number)", avg_material_scores)
|
||||
display_table("Average Success Score by Room (Grouped by Number)", avg_room_scores)
|
||||
display_zero_and_null_score_tasks()
|
||||
display_table("Average Success Score by Material", avg_material_scores)
|
||||
display_table("Average Success Score by Room", avg_room_scores)
|
||||
display_table("Average Success Score by (Material, Room) Tuples", avg_material_room_scores, tuple_keys=True)
|
||||
|
||||
# Example usage (replace 'root_directory' with actual path)
|
||||
root_directory = "experiments/exp_03-22_19-29"
|
||||
extract_success_scores(root_directory)
|
||||
# Example usage
|
||||
folders = ["experiments/gpt-4o_construction_tasks", "experiments/exp_03-23_12-31"]
|
||||
model_names = ["GPT-4o","Claude 3.5 sonnet"]
|
||||
extract_success_scores(folders, model_names)
|
|
@ -20,15 +20,11 @@ def extract_cooking_items(exp_dir):
|
|||
|
||||
return items
|
||||
|
||||
def analyze_experiments(root_dir):
|
||||
def analyze_experiments(root_dir, model_name):
|
||||
# Store results by number of blocked agents
|
||||
blocked_access_results = defaultdict(lambda: {
|
||||
"success": 0,
|
||||
"total": 0,
|
||||
"cake_success": 0,
|
||||
"cake_total": 0,
|
||||
"non_cake_success": 0,
|
||||
"non_cake_total": 0
|
||||
"total": 0
|
||||
})
|
||||
|
||||
# Store results by cooking item
|
||||
|
@ -51,9 +47,6 @@ def analyze_experiments(root_dir):
|
|||
# Add to unique items set
|
||||
all_cooking_items.update(cooking_items)
|
||||
|
||||
# Check if experiment involves cake
|
||||
has_cake = any(item == "cake" for item in cooking_items)
|
||||
|
||||
# Extract blocked access information from directory name
|
||||
blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir)
|
||||
|
||||
|
@ -104,119 +97,284 @@ def analyze_experiments(root_dir):
|
|||
if is_successful:
|
||||
cooking_item_results[item]["success"] += 1
|
||||
|
||||
# Update the appropriate blocked access counters
|
||||
# First update the category-specific counters
|
||||
if has_cake:
|
||||
blocked_access_results[blocked_key]["cake_total"] += 1
|
||||
if is_successful:
|
||||
blocked_access_results[blocked_key]["cake_success"] += 1
|
||||
else:
|
||||
blocked_access_results[blocked_key]["non_cake_total"] += 1
|
||||
if is_successful:
|
||||
blocked_access_results[blocked_key]["non_cake_success"] += 1
|
||||
|
||||
# Only count non-cake experiments in the main totals
|
||||
blocked_access_results[blocked_key]["total"] += 1
|
||||
if is_successful:
|
||||
blocked_access_results[blocked_key]["success"] += 1
|
||||
# Update the blocked access counters
|
||||
blocked_access_results[blocked_key]["total"] += 1
|
||||
if is_successful:
|
||||
blocked_access_results[blocked_key]["success"] += 1
|
||||
|
||||
return blocked_access_results, cooking_item_results, all_cooking_items
|
||||
|
||||
def print_blocked_results(results):
|
||||
print("\nExperiment Results by Number of Agents with Blocked Access (Excluding Cake Experiments):")
|
||||
print("=" * 80)
|
||||
print(f"{'Blocked Agents':<15} | {'Success Rate':<15} | {'Success/Total':<15} | {'Cake Tasks':<15} | {'Non-Cake Tasks':<15}")
|
||||
print("-" * 80)
|
||||
def print_model_comparison_blocked(models_results):
|
||||
print("\nModel Comparison by Number of Agents with Blocked Access:")
|
||||
print("=" * 100)
|
||||
|
||||
# Calculate totals
|
||||
total_success = 0
|
||||
total_experiments = 0
|
||||
total_cake = 0
|
||||
total_non_cake = 0
|
||||
# Get all possible blocked access keys
|
||||
all_blocked_keys = set()
|
||||
for model_results in models_results.values():
|
||||
all_blocked_keys.update(model_results.keys())
|
||||
|
||||
# Sort by number of blocked agents
|
||||
for key in sorted(results.keys(), key=lambda x: int(x.split()[0])):
|
||||
success = results[key]["success"]
|
||||
total = results[key]["total"]
|
||||
cake_total = results[key]["cake_total"]
|
||||
non_cake_total = results[key]["non_cake_total"]
|
||||
# Sort the keys
|
||||
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
|
||||
|
||||
# Create the header
|
||||
header = f"{'Blocked Agents':<15} | "
|
||||
for model_name in models_results.keys():
|
||||
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
# Calculate and print the results for each blocked key
|
||||
model_totals = {model: {"success": 0, "total": 0} for model in models_results.keys()}
|
||||
|
||||
for key in sorted_keys:
|
||||
row = f"{key:<15} | "
|
||||
|
||||
# Verify that non_cake_total matches total
|
||||
if non_cake_total != total:
|
||||
print(f"Warning: Non-cake total ({non_cake_total}) doesn't match the total ({total}) for {key}")
|
||||
|
||||
total_success += success
|
||||
total_experiments += total
|
||||
total_cake += cake_total
|
||||
total_non_cake += non_cake_total
|
||||
for model_name, model_results in models_results.items():
|
||||
if key in model_results:
|
||||
success = model_results[key]["success"]
|
||||
total = model_results[key]["total"]
|
||||
|
||||
model_totals[model_name]["success"] += success
|
||||
model_totals[model_name]["total"] += total
|
||||
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
# Print the overall results
|
||||
print("-" * 100)
|
||||
row = f"{'Overall':<15} | "
|
||||
|
||||
for model_name, totals in model_totals.items():
|
||||
success = totals["success"]
|
||||
total = totals["total"]
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
|
||||
print(f"{key:<15} | {success_rate:>6.2f}% | {success}/{total:<13} | {cake_total:<15} | {non_cake_total:<15}")
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
|
||||
# Calculate overall success rate (excluding cake experiments)
|
||||
overall_success_rate = (total_success / total_experiments * 100) if total_experiments > 0 else 0
|
||||
|
||||
print("-" * 80)
|
||||
print(f"{'Overall':<15} | {overall_success_rate:>6.2f}% | {total_success}/{total_experiments:<13} | {total_cake:<15} | {total_non_cake:<15}")
|
||||
|
||||
# Print cake experiment details
|
||||
print("\nCake Experiment Details:")
|
||||
print("=" * 60)
|
||||
print(f"{'Blocked Agents':<15} | {'Success Rate':<15} | {'Success/Total':<15}")
|
||||
print("-" * 60)
|
||||
|
||||
cake_total_success = 0
|
||||
cake_total_experiments = 0
|
||||
|
||||
for key in sorted(results.keys(), key=lambda x: int(x.split()[0])):
|
||||
cake_success = results[key]["cake_success"]
|
||||
cake_total = results[key]["cake_total"]
|
||||
|
||||
cake_total_success += cake_success
|
||||
cake_total_experiments += cake_total
|
||||
|
||||
cake_success_rate = (cake_success / cake_total * 100) if cake_total > 0 else 0
|
||||
|
||||
print(f"{key:<15} | {cake_success_rate:>6.2f}% | {cake_success}/{cake_total}")
|
||||
|
||||
cake_overall_success_rate = (cake_total_success / cake_total_experiments * 100) if cake_total_experiments > 0 else 0
|
||||
|
||||
print("-" * 60)
|
||||
print(f"{'Overall':<15} | {cake_overall_success_rate:>6.2f}% | {cake_total_success}/{cake_total_experiments}")
|
||||
print(row)
|
||||
|
||||
def print_cooking_items(cooking_items):
|
||||
print("\nUnique Cooking Items Found:")
|
||||
print("=" * 60)
|
||||
print(", ".join(sorted(cooking_items)))
|
||||
print(f"Total unique items: {len(cooking_items)}")
|
||||
|
||||
def print_item_results(item_results):
|
||||
print("\nExperiment Results by Cooking Item:")
|
||||
print("=" * 60)
|
||||
print(f"{'Cooking Item':<20} | {'Success Rate':<15} | {'Success/Total':<15}")
|
||||
print("-" * 60)
|
||||
def print_model_comparison_items(models_item_results, all_cooking_items):
|
||||
print("\nModel Comparison by Cooking Item:")
|
||||
print("=" * 100)
|
||||
|
||||
# Sort by item name
|
||||
for item in sorted(item_results.keys()):
|
||||
success = item_results[item]["success"]
|
||||
total = item_results[item]["total"]
|
||||
# Create the header
|
||||
header = f"{'Cooking Item':<20} | "
|
||||
for model_name in models_item_results.keys():
|
||||
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
# Calculate and print the results for each cooking item
|
||||
model_totals = {model: {"success": 0, "total": 0} for model in models_item_results.keys()}
|
||||
|
||||
for item in sorted(all_cooking_items):
|
||||
row = f"{item:<20} | "
|
||||
|
||||
for model_name, model_results in models_item_results.items():
|
||||
if item in model_results:
|
||||
success = model_results[item]["success"]
|
||||
total = model_results[item]["total"]
|
||||
|
||||
model_totals[model_name]["success"] += success
|
||||
model_totals[model_name]["total"] += total
|
||||
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
# Print the overall results
|
||||
print("-" * 100)
|
||||
row = f"{'Overall':<20} | "
|
||||
|
||||
for model_name, totals in model_totals.items():
|
||||
success = totals["success"]
|
||||
total = totals["total"]
|
||||
success_rate = (success / total * 100) if total > 0 else 0
|
||||
|
||||
print(f"{item:<20} | {success_rate:>6.2f}% | {success}/{total}")
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
|
||||
print("-" * 60)
|
||||
print(row)
|
||||
|
||||
def print_model_comparison_items_by_blocked(models_data, all_cooking_items):
|
||||
print("\nDetailed Model Comparison by Cooking Item and Blocked Agent Count:")
|
||||
print("=" * 120)
|
||||
|
||||
# For each cooking item, create a comparison table by blocked agent count
|
||||
for item in sorted(all_cooking_items):
|
||||
print(f"\nResults for cooking item: {item}")
|
||||
print("-" * 100)
|
||||
|
||||
# Create the header
|
||||
header = f"{'Blocked Agents':<15} | "
|
||||
for model_name in models_data.keys():
|
||||
header += f"{model_name+' Success Rate':<20} | {model_name+' Success/Total':<20} | "
|
||||
print(header)
|
||||
print("-" * 100)
|
||||
|
||||
# Get all possible blocked agent counts
|
||||
all_blocked_keys = set()
|
||||
for model_name, model_data in models_data.items():
|
||||
_, _, item_blocked_data = model_data
|
||||
for blocked_key in item_blocked_data.get(item, {}).keys():
|
||||
all_blocked_keys.add(blocked_key)
|
||||
|
||||
# Sort the keys
|
||||
sorted_keys = sorted(all_blocked_keys, key=lambda x: int(x.split()[0]))
|
||||
|
||||
# Print each row
|
||||
for blocked_key in sorted_keys:
|
||||
row = f"{blocked_key:<15} | "
|
||||
|
||||
for model_name, model_data in models_data.items():
|
||||
_, _, item_blocked_data = model_data
|
||||
|
||||
if item in item_blocked_data and blocked_key in item_blocked_data[item]:
|
||||
success = item_blocked_data[item][blocked_key]["success"]
|
||||
total = item_blocked_data[item][blocked_key]["total"]
|
||||
|
||||
if total > 0:
|
||||
success_rate = (success / total * 100)
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'0/0':<19} | "
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
# Print item summary for each model
|
||||
print("-" * 100)
|
||||
row = f"{'Overall':<15} | "
|
||||
|
||||
for model_name, model_data in models_data.items():
|
||||
_, item_results, _ = model_data
|
||||
|
||||
if item in item_results:
|
||||
success = item_results[item]["success"]
|
||||
total = item_results[item]["total"]
|
||||
|
||||
if total > 0:
|
||||
success_rate = (success / total * 100)
|
||||
row += f"{success_rate:>6.2f}%{'':<12} | {success}/{total}{'':<12} | "
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'0/0':<19} | "
|
||||
else:
|
||||
row += f"{'N/A':<19} | {'N/A':<19} | "
|
||||
|
||||
print(row)
|
||||
|
||||
def generate_item_blocked_data(experiments_root):
|
||||
# Organize data by item and blocked agent count
|
||||
item_blocked_data = defaultdict(lambda: defaultdict(lambda: {"success": 0, "total": 0}))
|
||||
|
||||
# Populate the data structure
|
||||
for exp_dir in os.listdir(experiments_root):
|
||||
if not os.path.isdir(os.path.join(experiments_root, exp_dir)) or not exp_dir.startswith("multiagent_cooking_"):
|
||||
continue
|
||||
|
||||
# Extract cooking items
|
||||
cooking_items = extract_cooking_items(exp_dir)
|
||||
|
||||
# Extract blocked access information
|
||||
blocked_access_match = re.search(r'blocked_access_([0-9_]+)$', exp_dir)
|
||||
if blocked_access_match:
|
||||
blocked_access_str = blocked_access_match.group(1)
|
||||
num_blocked_agents = len(blocked_access_str.split('_'))
|
||||
blocked_key = f"{num_blocked_agents} agent(s)"
|
||||
else:
|
||||
blocked_key = "0 agent(s)"
|
||||
|
||||
# Check if the task was successful
|
||||
is_successful = False
|
||||
full_exp_path = os.path.join(experiments_root, exp_dir)
|
||||
agent_files = [f for f in os.listdir(full_exp_path) if f.endswith(".json")]
|
||||
|
||||
for agent_file in agent_files:
|
||||
try:
|
||||
with open(os.path.join(full_exp_path, agent_file), 'r') as f:
|
||||
agent_data = json.load(f)
|
||||
|
||||
if "turns" in agent_data:
|
||||
for turn in agent_data["turns"]:
|
||||
if turn.get("role") == "system" and "content" in turn:
|
||||
if isinstance(turn["content"], str) and "Task ended with score : 1" in turn["content"]:
|
||||
is_successful = True
|
||||
break
|
||||
|
||||
if is_successful:
|
||||
break
|
||||
except:
|
||||
continue
|
||||
|
||||
# Update the item-blocked data
|
||||
for item in cooking_items:
|
||||
item_blocked_data[item][blocked_key]["total"] += 1
|
||||
if is_successful:
|
||||
item_blocked_data[item][blocked_key]["success"] += 1
|
||||
|
||||
return item_blocked_data
|
||||
|
||||
def main():
|
||||
# Update this path to your experiments directory
|
||||
experiments_root = "../results/llama_70b_hells_kitchen_cooking_tasks"
|
||||
base_dir = "experiments"
|
||||
|
||||
print(f"Analyzing experiments in: {os.path.abspath(experiments_root)}")
|
||||
blocked_results, item_results, unique_items = analyze_experiments(experiments_root)
|
||||
# Get the model directories
|
||||
all_model_dirs = [d for d in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, d))]
|
||||
gpt_dirs = [d for d in all_model_dirs if d.startswith("gpt-4o_30_cooking_tasks")]
|
||||
claude_dirs = [d for d in all_model_dirs if d.startswith("llama_70b_30_cooking_tasks")]
|
||||
|
||||
print_blocked_results(blocked_results)
|
||||
print_cooking_items(unique_items)
|
||||
print_item_results(item_results)
|
||||
if not gpt_dirs or not claude_dirs:
|
||||
print("Error: Could not find both model directories. Please check your paths.")
|
||||
return
|
||||
|
||||
# Use the first directory found for each model
|
||||
gpt_dir = os.path.join(base_dir, gpt_dirs[0])
|
||||
claude_dir = os.path.join(base_dir, claude_dirs[0])
|
||||
|
||||
print(f"Analyzing GPT-4o experiments in: {gpt_dir}")
|
||||
print(f"Analyzing Claude-3.5-Sonnet experiments in: {claude_dir}")
|
||||
|
||||
# Analyze each model directory
|
||||
gpt_blocked_results, gpt_item_results, gpt_unique_items = analyze_experiments(gpt_dir, "GPT-4o")
|
||||
claude_blocked_results, claude_item_results, claude_unique_items = analyze_experiments(claude_dir, "Claude-3.5")
|
||||
|
||||
# Combine unique cooking items
|
||||
all_cooking_items = gpt_unique_items.union(claude_unique_items)
|
||||
|
||||
# Generate item-blocked data for each model
|
||||
gpt_item_blocked_data = generate_item_blocked_data(gpt_dir)
|
||||
claude_item_blocked_data = generate_item_blocked_data(claude_dir)
|
||||
|
||||
# Create model comparison data structures
|
||||
models_blocked_results = {
|
||||
"GPT-4o": gpt_blocked_results,
|
||||
"Claude-3.5": claude_blocked_results
|
||||
}
|
||||
|
||||
models_item_results = {
|
||||
"GPT-4o": gpt_item_results,
|
||||
"Claude-3.5": claude_item_results
|
||||
}
|
||||
|
||||
models_data = {
|
||||
"GPT-4o": (gpt_blocked_results, gpt_item_results, gpt_item_blocked_data),
|
||||
"Claude-3.5": (claude_blocked_results, claude_item_results, claude_item_blocked_data)
|
||||
}
|
||||
|
||||
# Print the comparison tables
|
||||
print_model_comparison_blocked(models_blocked_results)
|
||||
print_model_comparison_items(models_item_results, all_cooking_items)
|
||||
print_model_comparison_items_by_blocked(models_data, all_cooking_items)
|
||||
|
||||
# Print overall statistics
|
||||
print("\nUnique Cooking Items Found:")
|
||||
print("=" * 60)
|
||||
print(", ".join(sorted(all_cooking_items)))
|
||||
print(f"Total unique items: {len(all_cooking_items)}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
Loading…
Add table
Reference in a new issue