mirror of
https://github.com/kolbytn/mindcraft.git
synced 2025-07-02 22:55:20 +02:00
Updated the usage of Qwen api
This commit is contained in:
parent
360db0cbcb
commit
0f926727f5
2 changed files with 37 additions and 29 deletions
|
@ -3,7 +3,7 @@
|
|||
|
||||
"model": {
|
||||
"api": "qwen",
|
||||
"url": "https://dashscope.aliyuncs.com/compatible-mode/v1",
|
||||
"url": "https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation",
|
||||
"model": "qwen-max"
|
||||
},
|
||||
|
||||
|
|
|
@ -1,40 +1,44 @@
|
|||
import OpenAIApi from 'openai';
|
||||
import { getKey } from '../utils/keys.js';
|
||||
import { strictFormat } from '../utils/text.js';
|
||||
|
||||
export class Qwen {
|
||||
constructor(model_name, url) {
|
||||
this.model_name = model_name;
|
||||
this.url = url;
|
||||
|
||||
const config = {
|
||||
baseURL: this.url,
|
||||
apiKey: getKey('QWEN_API_KEY'),
|
||||
};
|
||||
|
||||
this.openai = new OpenAIApi(config);
|
||||
this.apiKey = config.apiKey;
|
||||
this.url = url || 'https://dashscope.aliyuncs.com/api/v1/services/aigc/text-generation/generation';
|
||||
this.apiKey = getKey('QWEN_API_KEY');
|
||||
}
|
||||
|
||||
async sendRequest(turns, systemMessage, stop_seq = '***') {
|
||||
const messages = [{ role: 'system', content: systemMessage }, ...turns];
|
||||
const pack = {
|
||||
const data = {
|
||||
model: this.model_name || 'qwen-plus',
|
||||
messages: this.model_name.includes('o1') ? strictFormat(messages) : messages,
|
||||
stop: this.model_name.includes('o1') ? undefined : stop_seq,
|
||||
input: { messages: [{ role: 'system', content: systemMessage }, ...turns] },
|
||||
parameters: { result_format: 'message', stop: stop_seq },
|
||||
};
|
||||
|
||||
const headers = {
|
||||
'Authorization': `Bearer ${this.apiKey}`,
|
||||
'Content-Type': 'application/json',
|
||||
};
|
||||
|
||||
try {
|
||||
console.log('Awaiting Qwen API response...');
|
||||
const completion = await this.openai.chat.completions.create(pack);
|
||||
const choice = completion.choices[0];
|
||||
const response = await fetch(this.url, {
|
||||
method: 'POST',
|
||||
headers,
|
||||
body: JSON.stringify(data),
|
||||
});
|
||||
|
||||
if (choice.finish_reason === 'length') {
|
||||
if (!response.ok) throw new Error(`Request failed with status ${response.status}: ${response.statusText}`);
|
||||
|
||||
const responseData = await response.json();
|
||||
const choice = responseData?.output?.choices?.[0];
|
||||
|
||||
if (choice?.finish_reason === 'length') {
|
||||
console.log('Context length exceeded');
|
||||
return await this.sendRequest(turns.slice(1), systemMessage, stop_seq);
|
||||
return this.sendRequest(turns.slice(1), systemMessage, stop_seq);
|
||||
}
|
||||
|
||||
console.log('Received.');
|
||||
return choice.message.content;
|
||||
return choice?.message?.content || 'No content received.';
|
||||
} catch (err) {
|
||||
console.error('Error occurred:', err);
|
||||
return 'My brain disconnected, try again.';
|
||||
|
@ -47,28 +51,32 @@ export class Qwen {
|
|||
return 'Invalid input for embedding: text must be a non-empty string.';
|
||||
}
|
||||
|
||||
const headers = {
|
||||
'Authorization': `Bearer ${this.apiKey}`,
|
||||
'Content-Type': 'application/json'
|
||||
};
|
||||
const data = {
|
||||
model: 'text-embedding-v2',
|
||||
input: { texts: [text] },
|
||||
parameters: { text_type: 'query' }
|
||||
parameters: { text_type: 'query' },
|
||||
};
|
||||
|
||||
const headers = {
|
||||
'Authorization': `Bearer ${this.apiKey}`,
|
||||
'Content-Type': 'application/json',
|
||||
};
|
||||
|
||||
try {
|
||||
const response = await fetch(this.url, {
|
||||
method: 'POST',
|
||||
headers: headers,
|
||||
body: JSON.stringify(data)
|
||||
headers,
|
||||
body: JSON.stringify(data),
|
||||
});
|
||||
const responseData = await response.json();
|
||||
|
||||
if (!response.ok) throw new Error(`Request failed with status ${response.status}: ${response.statusText}`);
|
||||
|
||||
const responseData = await response.json();
|
||||
if (!responseData?.output?.embeddings) {
|
||||
console.error('Invalid response from embedding API');
|
||||
return 'An error occurred while processing your embedding request. Please try again.';
|
||||
}
|
||||
|
||||
return responseData.output.embeddings[0].embedding;
|
||||
} catch (err) {
|
||||
console.error('Error occurred:', err);
|
||||
|
|
Loading…
Add table
Reference in a new issue